系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2013年
2期
505~511
,共null页
刘俊娥 安凤平 林大超 郭章林 张立宁
劉俊娥 安鳳平 林大超 郭章林 張立寧
류준아 안봉평 림대초 곽장림 장립저
瓦斯涌出量 预测 采煤工作面 固有模态 支持向量机
瓦斯湧齣量 預測 採煤工作麵 固有模態 支持嚮量機
와사용출량 예측 채매공작면 고유모태 지지향량궤
gas emission; prediction; coalface; intrinsic mode; SVM
首先提出了一个依据EMD(empiricalmodedecomposition)方法提取固有模态分量进行SVM建模实现采煤工作面瓦斯涌出量预测的技术方法.利用瓦斯涌出量的历史记录数据,通过EMD分解得出其固有模态函数,即IMF分量,然后,对应于每个固有模态分别利用SVM函数拟合方法进行外推预测,再把不同固有模态的预测结果进行叠加重构合成,获得瓦斯涌出量的理论预测结果.从监测结果的实例分析发现,与常规SVM方法相比,EMD方法的引入能够大幅度提高理论模型的预测精度,并给出监测数据极为吻合的预测结果.实际应用表明,在采煤工作面瓦斯涌出量预测建模中,固有模态的提取和SVM方法的实施都充分利用了样本数据本身驱动的自适应性质,从而为保障优异的预测效果提供了良好的理论基础.
首先提齣瞭一箇依據EMD(empiricalmodedecomposition)方法提取固有模態分量進行SVM建模實現採煤工作麵瓦斯湧齣量預測的技術方法.利用瓦斯湧齣量的歷史記錄數據,通過EMD分解得齣其固有模態函數,即IMF分量,然後,對應于每箇固有模態分彆利用SVM函數擬閤方法進行外推預測,再把不同固有模態的預測結果進行疊加重構閤成,穫得瓦斯湧齣量的理論預測結果.從鑑測結果的實例分析髮現,與常規SVM方法相比,EMD方法的引入能夠大幅度提高理論模型的預測精度,併給齣鑑測數據極為吻閤的預測結果.實際應用錶明,在採煤工作麵瓦斯湧齣量預測建模中,固有模態的提取和SVM方法的實施都充分利用瞭樣本數據本身驅動的自適應性質,從而為保障優異的預測效果提供瞭良好的理論基礎.
수선제출료일개의거EMD(empiricalmodedecomposition)방법제취고유모태분량진행SVM건모실현채매공작면와사용출량예측적기술방법.이용와사용출량적역사기록수거,통과EMD분해득출기고유모태함수,즉IMF분량,연후,대응우매개고유모태분별이용SVM함수의합방법진행외추예측,재파불동고유모태적예측결과진행첩가중구합성,획득와사용출량적이론예측결과.종감측결과적실례분석발현,여상규SVM방법상비,EMD방법적인입능구대폭도제고이론모형적예측정도,병급출감측수거겁위문합적예측결과.실제응용표명,재채매공작면와사용출량예측건모중,고유모태적제취화SVM방법적실시도충분이용료양본수거본신구동적자괄응성질,종이위보장우이적예측효과제공료량호적이론기출.
A technique to predict the gas emission from the coalface is presented which is realized by the intrinsic mode SVM modeling on the basis of the intrinsic mode components drawn out from the observed dada by means of the EMD (empirical mode decomposition) method. The intrinsic mode functions, that is, IMF components, are obtained by the EMD analysis of the historical recording dada of gas emission, and after the prediction of each intrinsic mode is carried out by the extrapolation of its regression function determined by the SVM function regression approach, then the prediction result of gas emission is derived through the reconstruction summing all prediction results corresponding to different intrinsic modes. Prom an application example related to the monitoring data it can be seen that the introduction of EMD method into the theoretical modeling to predict the gas emission from the coalface obviously improves the accuracy in comparison with the conventional SVM method, to have the prediction results agreement with the monitoring data. The theoretical analysis shows that in modeling the gas emission from the coalface, the extraction of intrinsic modes and the operation of SVM method make full use of the sampling data driven adaptive performances, and hence provide better theoretical fundamentals for guarding perfect prediction efficiency.