系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2013年
5期
1298~1306
,共null页
白春华 周宣赤 林大超 王仲琦
白春華 週宣赤 林大超 王仲琦
백춘화 주선적 림대초 왕중기
振动信号 粒子群算法 支持向量机 经验模态分解 端点效应
振動信號 粒子群算法 支持嚮量機 經驗模態分解 耑點效應
진동신호 입자군산법 지지향량궤 경험모태분해 단점효응
vibration signal; particle swarm optimization (PSO); support vector machine (SVM); empiricalmode decomposition (EMD); end effects
经验模态分解(empiricalmodedecomposition,简称EMD)的端点效应使得EMD分解结果产生严重失真,为了减小分解过程中产生的端点效应,将支持向量机(SVM)这一智能算法引入EMD,提出采用SVM模型解决分解中产生的端点效应问题.通过支持向量机对其原始数据两端进行延拓,以获得一个或者多个极大值和极小值.为了使端点处的延拓变得更加合理,引入粒子群(PSO)智能算法对支持向量机算法参数进行优化,使其两个端点处的数据延拓得更加准确,从而使得三次样条曲线在端点处不会发生大的摆动,实现EMD分解的固有模态函数(IMF)更加准确可靠.通过对仿真信号的研究表明,基于PSO—SVM方法的延拓方法能够很好地抑制了分解的端点效应.
經驗模態分解(empiricalmodedecomposition,簡稱EMD)的耑點效應使得EMD分解結果產生嚴重失真,為瞭減小分解過程中產生的耑點效應,將支持嚮量機(SVM)這一智能算法引入EMD,提齣採用SVM模型解決分解中產生的耑點效應問題.通過支持嚮量機對其原始數據兩耑進行延拓,以穫得一箇或者多箇極大值和極小值.為瞭使耑點處的延拓變得更加閤理,引入粒子群(PSO)智能算法對支持嚮量機算法參數進行優化,使其兩箇耑點處的數據延拓得更加準確,從而使得三次樣條麯線在耑點處不會髮生大的襬動,實現EMD分解的固有模態函數(IMF)更加準確可靠.通過對倣真信號的研究錶明,基于PSO—SVM方法的延拓方法能夠很好地抑製瞭分解的耑點效應.
경험모태분해(empiricalmodedecomposition,간칭EMD)적단점효응사득EMD분해결과산생엄중실진,위료감소분해과정중산생적단점효응,장지지향량궤(SVM)저일지능산법인입EMD,제출채용SVM모형해결분해중산생적단점효응문제.통과지지향량궤대기원시수거량단진행연탁,이획득일개혹자다개겁대치화겁소치.위료사단점처적연탁변득경가합리,인입입자군(PSO)지능산법대지지향량궤산법삼수진행우화,사기량개단점처적수거연탁득경가준학,종이사득삼차양조곡선재단점처불회발생대적파동,실현EMD분해적고유모태함수(IMF)경가준학가고.통과대방진신호적연구표명,기우PSO—SVM방법적연탁방법능구흔호지억제료분해적단점효응.
End effects of EMD (empirical mode decomposition) make a serious distortion of the decom- position result. In order to reduce the end effects in the process of decomposition, support vector machine (SVM) which is a kind of intelligent algorithm is combined with EMD, then a solution to the end effects problem during the course of decomposition using SVM model is proposed. Firstly, one or more extreme values are obtained by extending two endpoints of the original data with SVM. Moreover, in order to get more reasonable extension at endpoint, SVM algorithm is combined with particle swarm algorithm (PSO) to optimize the parameters, and the extension of two endpoints will be more accurate, then the end-points of cubic spline curve will not have large swing so as to achieve that intrinsic mode functions (IMF) of EMD are more accurate and reliable. Simulation results indicate that the extension method for data based on PSO-SVM method can restrain the end effects effectively.