中国人口资源与环境
中國人口資源與環境
중국인구자원여배경
China Polulation.Resources and Environment
2013年
6期
169~176
,共null页
电动汽车 电池回收 环境保护 排队论 Anyiogic
電動汽車 電池迴收 環境保護 排隊論 Anyiogic
전동기차 전지회수 배경보호 배대론 Anyiogic
electric vehicle ; battery recycling ; environment protection ; queuing theory ; Any|ogic
本文基于排队论理论.从仿真的角度,对电池回收系统中的主要对象电动汽车、电池以及电动汽车和电池匹配进行模拟,应用Anylogic仿真平台,搭建电动汽车电池回收的排队论模型,进而分析电动汽车和电池生产速率、电动汽车和电池寿命、电池更新次数以及电池翻新率等因素对报废车比例、报废电池比例以及汽车重复使用电池比例的影响程度。研究获得以下主要结论:电池生产速率在区间[1,2]变化对结果影响最大,报废车比例迅速下降约10%,其它指标则平均增加5%;电动汽车和电池按照1:4的比例进行生产,系统处于最优状态;电池寿命在区间[12,24]之间变化对结果影响最明显,报废电池比例降12%左右,其它指标则平均增加4%左右:电池更新次数在区间[1,2]变化,报废电池比例会迅速下降15%,随着电池更新次数的继续增加。报废电池比例会缓慢下降。直到更新次数为4的时候,系统处于最优;当翻新率从0.5增加到09时候。报废电池比例会从70%迅速下降到16%左右,二/三/四手电池使用比例,则从43%、17%、6%分别提高到78%、31%、11%左右,几乎都是提高了一倍。因素对对仿真结果的影响程度,会受到电池和汽车的相对寿命RL的约束。最后文章提出,根据RI。合理安排电动汽车和电池的生产速率以及科学计算电池翻新次数,重视技术的投入产出分析和提高电池翻新率等政策建议。
本文基于排隊論理論.從倣真的角度,對電池迴收繫統中的主要對象電動汽車、電池以及電動汽車和電池匹配進行模擬,應用Anylogic倣真平檯,搭建電動汽車電池迴收的排隊論模型,進而分析電動汽車和電池生產速率、電動汽車和電池壽命、電池更新次數以及電池翻新率等因素對報廢車比例、報廢電池比例以及汽車重複使用電池比例的影響程度。研究穫得以下主要結論:電池生產速率在區間[1,2]變化對結果影響最大,報廢車比例迅速下降約10%,其它指標則平均增加5%;電動汽車和電池按照1:4的比例進行生產,繫統處于最優狀態;電池壽命在區間[12,24]之間變化對結果影響最明顯,報廢電池比例降12%左右,其它指標則平均增加4%左右:電池更新次數在區間[1,2]變化,報廢電池比例會迅速下降15%,隨著電池更新次數的繼續增加。報廢電池比例會緩慢下降。直到更新次數為4的時候,繫統處于最優;噹翻新率從0.5增加到09時候。報廢電池比例會從70%迅速下降到16%左右,二/三/四手電池使用比例,則從43%、17%、6%分彆提高到78%、31%、11%左右,幾乎都是提高瞭一倍。因素對對倣真結果的影響程度,會受到電池和汽車的相對壽命RL的約束。最後文章提齣,根據RI。閤理安排電動汽車和電池的生產速率以及科學計算電池翻新次數,重視技術的投入產齣分析和提高電池翻新率等政策建議。
본문기우배대론이론.종방진적각도,대전지회수계통중적주요대상전동기차、전지이급전동기차화전지필배진행모의,응용Anylogic방진평태,탑건전동기차전지회수적배대론모형,진이분석전동기차화전지생산속솔、전동기차화전지수명、전지경신차수이급전지번신솔등인소대보폐차비례、보폐전지비례이급기차중복사용전지비례적영향정도。연구획득이하주요결론:전지생산속솔재구간[1,2]변화대결과영향최대,보폐차비례신속하강약10%,기타지표칙평균증가5%;전동기차화전지안조1:4적비례진행생산,계통처우최우상태;전지수명재구간[12,24]지간변화대결과영향최명현,보폐전지비례강12%좌우,기타지표칙평균증가4%좌우:전지경신차수재구간[1,2]변화,보폐전지비례회신속하강15%,수착전지경신차수적계속증가。보폐전지비례회완만하강。직도경신차수위4적시후,계통처우최우;당번신솔종0.5증가도09시후。보폐전지비례회종70%신속하강도16%좌우,이/삼/사수전지사용비례,칙종43%、17%、6%분별제고도78%、31%、11%좌우,궤호도시제고료일배。인소대대방진결과적영향정도,회수도전지화기차적상대수명RL적약속。최후문장제출,근거RI。합리안배전동기차화전지적생산속솔이급과학계산전지번신차수,중시기술적투입산출분석화제고전지번신솔등정책건의。
Based on Queuing theory and Anylogic platform, it does simulation for cars, batteries and car-battery matching, which are all the main objects in the electric vehicle battery recycling system; then, queuing model of battery recycling is built. And lastly, it analyzes the influence that electric vehicle/battery production rate, electric vehicle/battery lifetime, battery renovation times and battery renovation rate have on recycling. Some important conclusions are obtained: When battery production rate changes in the interval [1,2], the results fluctuate greatly, the proportion of scrapped cars decline about 10% rapidly, and there are an average increase of 5% for other indicators. System is optimal if vehicle and battery are produced in accordance with a ratio of 1 : 4. When battery lifetime changes in the interval [ 12,24 ] , the results fluctuate greatly, the proportion of wasted battery decreases about 12% largely, and there are an average increase of 4% for other indicators. When battery renovation times changes in the interval [1,2] , the proportion of wasted battery decreased by about 15% rapidly. If the battery renovation times continue to be increased, the proportion of wasted battery will decrease slowly, and the system is optimal until the times are increased to 4. When the renovation rate increases from O. 5 to O. 9, the proportion of wasted batteries will decline from 70% to 16% sharply, and the proportion of reused battery rises from43%, 17% and 6% to 78%, 31% and 11% respectively, which almost increases 100%. The influence of parameters on simulation results depends on the relative life (RL) of the battery and the vehicle greatly. Finally, the paper proposes to organize electric vehicle and battery production ratio reasonably and to compute renovation times scientifically according to the RL, to pay attention to the input-output analysis of technology investment, and to improve battery renovation rate, et al.