湖北工程学院学报
湖北工程學院學報
호북공정학원학보
JOURNAL OF XIAOGAN UNIVERSITY
2013年
3期
5~12
,共null页
甘家梁 李志敏 徐翠琴 谈怀江 李骥
甘傢樑 李誌敏 徐翠琴 談懷江 李驥
감가량 리지민 서취금 담부강 리기
BP神经网络 PID控制器 交流异步电机 交流电机调速系统
BP神經網絡 PID控製器 交流異步電機 交流電機調速繫統
BP신경망락 PID공제기 교류이보전궤 교류전궤조속계통
BP neural network; PID controller; AC motor; alternator speed control system
针对传统的PID控制算法参数整定困难、控制效果不理想,一般BP神经网络算法收敛速度慢,容易使运行系统局部陷入极小及稳态时震荡等缺点,将神经网络算法与PID控制法相结合,引入动量因子自适应学习速率算法改进PID神经网络,并在Matlab中进行了实时仿真训练。仿真结果表明,此控制策略在被控对象未知或参数变化的情况下,具有很强的适应性和鲁棒性,相对于其他PID和神经网络调整参数方法,本算法有其实用性。
針對傳統的PID控製算法參數整定睏難、控製效果不理想,一般BP神經網絡算法收斂速度慢,容易使運行繫統跼部陷入極小及穩態時震盪等缺點,將神經網絡算法與PID控製法相結閤,引入動量因子自適應學習速率算法改進PID神經網絡,併在Matlab中進行瞭實時倣真訓練。倣真結果錶明,此控製策略在被控對象未知或參數變化的情況下,具有很彊的適應性和魯棒性,相對于其他PID和神經網絡調整參數方法,本算法有其實用性。
침대전통적PID공제산법삼수정정곤난、공제효과불이상,일반BP신경망락산법수렴속도만,용역사운행계통국부함입겁소급은태시진탕등결점,장신경망락산법여PID공제법상결합,인입동량인자자괄응학습속솔산법개진PID신경망락,병재Matlab중진행료실시방진훈련。방진결과표명,차공제책략재피공대상미지혹삼수변화적정황하,구유흔강적괄응성화로봉성,상대우기타PID화신경망락조정삼수방법,본산법유기실용성。
The traditional PID control algorithm has difficulty in tuning satisfactory controlling effect. While a general BP neural network has parameters, leading to an un- a low convergence rate and is prone to fall into a local minimum and unsteady state. To solve the aforementioned problems, this pa- per combines the BP neural network algorithm and PID control by introducing an adaptive learning method for the momentum factor to improve the PID neural network. As well, a real-time training is simulated with MATLAB. Simulated results show that the proposed BP-PID controller has stronger anti-interference ability and more robustness in the ease of unknown controlled targets and changing parameters. Compared with other PID controllers or parameters adjustment methods with neural net- work, the proposed model has better practicality.