上海体育学院学报
上海體育學院學報
상해체육학원학보
Journal of Shanghai Physical Education Institute
2013年
5期
57~62
,共null页
大鼠 力竭运动 “黑质-丘脑-皮层”通路 皮层脑电 局部场电
大鼠 力竭運動 “黑質-丘腦-皮層”通路 皮層腦電 跼部場電
대서 력갈운동 “흑질-구뇌-피층”통로 피층뇌전 국부장전
rat; exhausting exercise; SNr-VL-SMA pathway;ECoG; local field potentials
目的:探讨“黑质-丘脑-皮层”神经通路在运动疲劳发生、发展中的调控作用。方法:采用局部场电(LFPs)及皮层脑电(ECoG)同步记录技术,对一次性力竭运动中大鼠黑质网状部(SNr)、丘脑腹外侧核(VL)及皮层辅助运动区(SMA)神经元电活动变化进行同步、动态观察。结果:在力竭运动的不同阶段“黑质-丘脑-皮层”通路神经元电活动出现明显的阶段性变化特征:自主运动期黑质网状部神经元电活动频率减小,振幅增大,δ、θ波活动显著增强,兴奋性下降;丘脑腹外侧核和皮层神经元电活动频率增大,振幅减小,α波活动显著增强,兴奋性升高;疲劳初期和力竭期时,黑质网状部神经元电活动频率增大,振幅减小,α波活动显著增强,兴奋性升高,丘脑腹外侧核和皮层神经元电活动频率减小,振幅增大,δ、θ波活动显著增强,兴奋性下降。力竭运动中皮层与丘脑腹外侧核电活动变化趋势相同,但与黑质网状部相反。结论:大鼠力竭时,黑质网状部神经元兴奋性增强,抑制了丘脑腹外侧核神经元的兴奋性,进而对运动皮层产生去兴奋作用。“黑质-丘脑-皮层”通路功能失调是导致力竭及运动能力下降的重要因素之一。
目的:探討“黑質-丘腦-皮層”神經通路在運動疲勞髮生、髮展中的調控作用。方法:採用跼部場電(LFPs)及皮層腦電(ECoG)同步記錄技術,對一次性力竭運動中大鼠黑質網狀部(SNr)、丘腦腹外側覈(VL)及皮層輔助運動區(SMA)神經元電活動變化進行同步、動態觀察。結果:在力竭運動的不同階段“黑質-丘腦-皮層”通路神經元電活動齣現明顯的階段性變化特徵:自主運動期黑質網狀部神經元電活動頻率減小,振幅增大,δ、θ波活動顯著增彊,興奮性下降;丘腦腹外側覈和皮層神經元電活動頻率增大,振幅減小,α波活動顯著增彊,興奮性升高;疲勞初期和力竭期時,黑質網狀部神經元電活動頻率增大,振幅減小,α波活動顯著增彊,興奮性升高,丘腦腹外側覈和皮層神經元電活動頻率減小,振幅增大,δ、θ波活動顯著增彊,興奮性下降。力竭運動中皮層與丘腦腹外側覈電活動變化趨勢相同,但與黑質網狀部相反。結論:大鼠力竭時,黑質網狀部神經元興奮性增彊,抑製瞭丘腦腹外側覈神經元的興奮性,進而對運動皮層產生去興奮作用。“黑質-丘腦-皮層”通路功能失調是導緻力竭及運動能力下降的重要因素之一。
목적:탐토“흑질-구뇌-피층”신경통로재운동피로발생、발전중적조공작용。방법:채용국부장전(LFPs)급피층뇌전(ECoG)동보기록기술,대일차성력갈운동중대서흑질망상부(SNr)、구뇌복외측핵(VL)급피층보조운동구(SMA)신경원전활동변화진행동보、동태관찰。결과:재력갈운동적불동계단“흑질-구뇌-피층”통로신경원전활동출현명현적계단성변화특정:자주운동기흑질망상부신경원전활동빈솔감소,진폭증대,δ、θ파활동현저증강,흥강성하강;구뇌복외측핵화피층신경원전활동빈솔증대,진폭감소,α파활동현저증강,흥강성승고;피로초기화력갈기시,흑질망상부신경원전활동빈솔증대,진폭감소,α파활동현저증강,흥강성승고,구뇌복외측핵화피층신경원전활동빈솔감소,진폭증대,δ、θ파활동현저증강,흥강성하강。력갈운동중피층여구뇌복외측핵전활동변화추세상동,단여흑질망상부상반。결론:대서력갈시,흑질망상부신경원흥강성증강,억제료구뇌복외측핵신경원적흥강성,진이대운동피층산생거흥강작용。“흑질-구뇌-피층”통로공능실조시도치력갈급운동능력하강적중요인소지일。
Objective: It is to observe the modulatory effect of ' SNr- VL-SMA' pathway during the exhaustive exercises. Methods: The dynamic changes of neural activity in SNr, VL and SMA were simultaneously recorded through the LFPs and ECoG recording techniques. Results: The neural activity of the 'SNr-VL-SMA' pathway showed dear stage features: during the automatic period, dominant frequency of SNr activity decreased, while the amplitude of the activity and power of δ and θ band increased significantly, which implies the decrease of neural activity; meanwhile in VL and SMA, the dominant frequency increased and the amplitude decreased; thepower of of band increased significantly and the neural activity increased. At the beginning of the fatigue period and exhaustive stage, the dominant frequency of SNr increased and the amplitude decreased; the power of a band increased significantly and the neural activity increased. In VL and SMA, the amplitude and β and θ power increased while the neural activity and dominant frequency degreased. In general, the neural activity of SMA and VL changed in the same way, but in a contrary way with SNr. Conclusions: The increased neural activity in SNr depressed the VL activity, and thus inhibited the neural activity in SMA. The dysfunction of the ' SNr-VL-SMA' pathway might be one of the important factors resulting in fatigue and decrease of the exercise capacity.