系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2013年
9期
2339~2346
,共null页
刘耀武 聂风华 苏强 霍佳震
劉耀武 聶風華 囌彊 霍佳震
류요무 섭풍화 소강 곽가진
节能 电梯群控 等待时间 粒子群算法 数值仿真
節能 電梯群控 等待時間 粒子群算法 數值倣真
절능 전제군공 등대시간 입자군산법 수치방진
energy saving; elevator group control; waiting time; particle swarm optimization algorithm;numerical simulation
针对电梯节能问题,提出电梯能耗损失计算方法,构建具有时间约束的电梯节能调度模型,应用粒子群算法(particle swarm optimization,PSO)分别对已知目标楼层和预测目标楼层两种情况的电梯节能调度问题进行建模和求解.通过数值仿真分析,从等待时间和能耗两方面比较了三种算法(最近服务原则(nearest car,NC)、已知目标楼层的粒子群算法和预测目标楼层的粒子群算法)的性能.研究结果表明,与NC算法相比,在保证80%以上乘客等待时间小于60s的情况下,已知目标楼层的PSO算法可以实现系统节能18.2%;预测目标楼层的PSO算法可以实现系统节能9.6%.随着等待时间约束的放宽,PSO算法可获得的节能比例显著增加.目标楼层的准确性对节能调度具有重要影响,已知目标楼层的PSO算法会比预测目标楼层的PSO算法约多节能10%.
針對電梯節能問題,提齣電梯能耗損失計算方法,構建具有時間約束的電梯節能調度模型,應用粒子群算法(particle swarm optimization,PSO)分彆對已知目標樓層和預測目標樓層兩種情況的電梯節能調度問題進行建模和求解.通過數值倣真分析,從等待時間和能耗兩方麵比較瞭三種算法(最近服務原則(nearest car,NC)、已知目標樓層的粒子群算法和預測目標樓層的粒子群算法)的性能.研究結果錶明,與NC算法相比,在保證80%以上乘客等待時間小于60s的情況下,已知目標樓層的PSO算法可以實現繫統節能18.2%;預測目標樓層的PSO算法可以實現繫統節能9.6%.隨著等待時間約束的放寬,PSO算法可穫得的節能比例顯著增加.目標樓層的準確性對節能調度具有重要影響,已知目標樓層的PSO算法會比預測目標樓層的PSO算法約多節能10%.
침대전제절능문제,제출전제능모손실계산방법,구건구유시간약속적전제절능조도모형,응용입자군산법(particle swarm optimization,PSO)분별대이지목표루층화예측목표루층량충정황적전제절능조도문제진행건모화구해.통과수치방진분석,종등대시간화능모량방면비교료삼충산법(최근복무원칙(nearest car,NC)、이지목표루층적입자군산법화예측목표루층적입자군산법)적성능.연구결과표명,여NC산법상비,재보증80%이상승객등대시간소우60s적정황하,이지목표루층적PSO산법가이실현계통절능18.2%;예측목표루층적PSO산법가이실현계통절능9.6%.수착등대시간약속적방관,PSO산법가획득적절능비례현저증가.목표루층적준학성대절능조도구유중요영향,이지목표루층적PSO산법회비예측목표루층적PSO산법약다절능10%.
An energy saving problem of elevator system is studied with the restriction of each passenger's waiting time. In order to simplify the optimal problem, the energy consumption model is modified according to energy loss theory. And the energy saving elevator group control algorithm is constructed based on particle swarm optimization algorithm, which is applicable to both known and predicted target floor situation. In addition, a numerical simulation is implemented and, by which, effectiveness of the new algorithm is verified under different waiting time restriction and different passenger arrival rate. The simulation results demonstrate that, compared with the traditional nearest car strategy, the new algorithm can achieve energy conservation without service level decline significantly. Due to the drawback of the used prediction method, the new algorithm behaves better under known target floor situation than predicted target floor situation.