系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2013年
10期
2701~2707
,共null页
任明秋 蔡金燕 朱元清 韩壮志
任明鞦 蔡金燕 硃元清 韓壯誌
임명추 채금연 주원청 한장지
雷达抗干扰 粗糙集 自适应模糊推理网络 性能评估
雷達抗榦擾 粗糙集 自適應模糊推理網絡 性能評估
뢰체항간우 조조집 자괄응모호추리망락 성능평고
radar ECCM; rough set; ANFIS; capability evaluation
雷达抗干扰性能评估是雷达系统研制、引进、装备过程中必要的环节.如何综合评估复杂电磁环境下的雷达抗干扰性能评估已成为研究的重点.针对现有雷达抗干扰性能评估方法的特点和局限性,提出了一种基于粗糙集一自适应神经网络模糊推理系统(RS—ANFIS)的性能评估方法.首先,针对原始样本数据的不完备性和不确定性,采用粗糙集理论对原始样本数据进行数据归一化、离散化、属性约简处理,并得到覆盖原始样本特征的最小规则集.其次,建立了基于ANFIS的Sugeno型性能评估模型,设计了评估变量的隶属度函数和推理规则,确定了评估网络各层输入输出关系以及网络学习算法.最后,以12组雷达抗干扰性能评估指标为例进行算法模型验证,表明了方法的可行性和模型的有效性.实验结果表明,该方法能够有效改进网络结构,提高雷达抗干扰性能评估结果的可信度.
雷達抗榦擾性能評估是雷達繫統研製、引進、裝備過程中必要的環節.如何綜閤評估複雜電磁環境下的雷達抗榦擾性能評估已成為研究的重點.針對現有雷達抗榦擾性能評估方法的特點和跼限性,提齣瞭一種基于粗糙集一自適應神經網絡模糊推理繫統(RS—ANFIS)的性能評估方法.首先,針對原始樣本數據的不完備性和不確定性,採用粗糙集理論對原始樣本數據進行數據歸一化、離散化、屬性約簡處理,併得到覆蓋原始樣本特徵的最小規則集.其次,建立瞭基于ANFIS的Sugeno型性能評估模型,設計瞭評估變量的隸屬度函數和推理規則,確定瞭評估網絡各層輸入輸齣關繫以及網絡學習算法.最後,以12組雷達抗榦擾性能評估指標為例進行算法模型驗證,錶明瞭方法的可行性和模型的有效性.實驗結果錶明,該方法能夠有效改進網絡結構,提高雷達抗榦擾性能評估結果的可信度.
뢰체항간우성능평고시뢰체계통연제、인진、장비과정중필요적배절.여하종합평고복잡전자배경하적뢰체항간우성능평고이성위연구적중점.침대현유뢰체항간우성능평고방법적특점화국한성,제출료일충기우조조집일자괄응신경망락모호추리계통(RS—ANFIS)적성능평고방법.수선,침대원시양본수거적불완비성화불학정성,채용조조집이론대원시양본수거진행수거귀일화、리산화、속성약간처리,병득도복개원시양본특정적최소규칙집.기차,건립료기우ANFIS적Sugeno형성능평고모형,설계료평고변량적대속도함수화추리규칙,학정료평고망락각층수입수출관계이급망락학습산법.최후,이12조뢰체항간우성능평고지표위례진행산법모형험증,표명료방법적가행성화모형적유효성.실험결과표명,해방법능구유효개진망락결구,제고뢰체항간우성능평고결과적가신도.
The radar electronic counter-countermeasures (ECCM) capability evaluation (CE) method is the essential step in the radar development, introduction, and service process. Consequentially, the CE for radar ECCM in the complex electromagnetic environment becomes a research focus point. Considered with the present research situation, a technique for CE based on rough sets and adaptive neuro fuzzy inference system (RS-ANFIS) is proposed to solve the properties and vulnerabilities existed in the CE methods. According to the uncertainty and imperfection of the original sample data, the rough set is used to preprocess for the normalization of data, the discretization of continuous data and the attribute reduction in order to obtain the minimum feature subset. Then a model for CE based on ANFIS with Sugeno type is established. The membership functions and the inference rules of the system variables are devised with computational relations between layers of the input and output and the learning algorithm of neural network. Subsequently 12 typical sample sets are used to check the validity and rationality of constructed model. The experiment results show that the proposed method can effectively optimize the structure of neural networks and make the radar ECCM capability evaluation more feasibly and practically.