工业技术经济
工業技術經濟
공업기술경제
Industrial Technology & Economy
2014年
2期
103~112
,共null页
失业综合指数 多元线性回归 BP神经网络 预测模型
失業綜閤指數 多元線性迴歸 BP神經網絡 預測模型
실업종합지수 다원선성회귀 BP신경망락 예측모형
composite index of unemployment;multiple linear regression;BP neural network;forecast model
本文首先构建失业综合指数及其测算指标体系,用来客观地反映失业状况;其次通过文献研究、发放问卷调查等分析方法,并在考虑数据可获得性、可靠性等前提下,初步整理出影响失业的相关因素,以2000~2012年各季度对应的数据,对失业综合指数及其影响因素进行多元线性逐步回归分析,从中筛选出影响显著的因素,构建失业综合指数预测模型。同时基于线性相关分析筛选的结果,构建BP神经网络预测模型,同样对失业状况进行预测,并与多元回归预测模型的预测结论进行比较,结果发现后者预测性能高于前者。
本文首先構建失業綜閤指數及其測算指標體繫,用來客觀地反映失業狀況;其次通過文獻研究、髮放問捲調查等分析方法,併在攷慮數據可穫得性、可靠性等前提下,初步整理齣影響失業的相關因素,以2000~2012年各季度對應的數據,對失業綜閤指數及其影響因素進行多元線性逐步迴歸分析,從中篩選齣影響顯著的因素,構建失業綜閤指數預測模型。同時基于線性相關分析篩選的結果,構建BP神經網絡預測模型,同樣對失業狀況進行預測,併與多元迴歸預測模型的預測結論進行比較,結果髮現後者預測性能高于前者。
본문수선구건실업종합지수급기측산지표체계,용래객관지반영실업상황;기차통과문헌연구、발방문권조사등분석방법,병재고필수거가획득성、가고성등전제하,초보정리출영향실업적상관인소,이2000~2012년각계도대응적수거,대실업종합지수급기영향인소진행다원선성축보회귀분석,종중사선출영향현저적인소,구건실업종합지수예측모형。동시기우선성상관분석사선적결과,구건BP신경망락예측모형,동양대실업상황진행예측,병여다원회귀예측모형적예측결론진행비교,결과발현후자예측성능고우전자。
Firstly , this paper structured the composite index of unemployment (CIU ) , which could reflect the unemployment situa-tion objectively ;secondly , through the way of literature review , questionnaire surveys , and taking into account the availability and relia-bility of the data , the writer sort out the relevant factors which affecting unemployment preliminarily . Finally , based on the data during the years of 2000~2012 , with SPSS17.0 software , multiple linear stepwise regression method have been applied to analysis the relationship between CIU and its influencing factors , and the key factors which affect CIU most significantly were extracted to construct the multiple re-gression forecast model of CIU . Meanwhile ,based on the results of the linear correlation analysis ,and through software of MATLAB R12a , the BP neural network prediction model were constructed too , and comparing with multiple regression prediction model , the research con-clusions showed that the latter prediction model performance better than the former .