山东外语教学
山東外語教學
산동외어교학
Shandong Foreign Languages Journal
2014年
1期
8~15
,共null页
视觉隐喻 拓扑性质 变换下保持不变 同胚 爱尔朗根计划
視覺隱喻 拓撲性質 變換下保持不變 同胚 愛爾朗根計劃
시각은유 탁복성질 변환하보지불변 동배 애이랑근계화
metaphor perceived by ocular organ; topological nature; invariance over transformation; homomor-phism ; Erlangen Program
对视觉隐喻进行拓扑性质的研究和分析是隐喻研究的一个新课题.视觉隐喻指其本体和喻体都能用视觉器官感知的那些隐喻;拓扑性质指拓扑学所说的平面几何图形在连续变换下保持不变这一性质.隐喻的一个特征表现为“本体域是喻体域”,即喻体对于本体具有拓扑性质的不变性;喻体与本体是同胚的和共相的,这就体现了隐喻在变换下保持不变这一性质.共相表现为本体与喻体是相同、相似、相应或相关的;从观察可知,这同德国数学家克菜因根据变换群在“爱尔朗根计划”提出的对几何作出的分类:欧几里得几何、仿射几何、射影几何、拓扑几何所发生的变换大体是对应的.
對視覺隱喻進行拓撲性質的研究和分析是隱喻研究的一箇新課題.視覺隱喻指其本體和喻體都能用視覺器官感知的那些隱喻;拓撲性質指拓撲學所說的平麵幾何圖形在連續變換下保持不變這一性質.隱喻的一箇特徵錶現為“本體域是喻體域”,即喻體對于本體具有拓撲性質的不變性;喻體與本體是同胚的和共相的,這就體現瞭隱喻在變換下保持不變這一性質.共相錶現為本體與喻體是相同、相似、相應或相關的;從觀察可知,這同德國數學傢剋菜因根據變換群在“愛爾朗根計劃”提齣的對幾何作齣的分類:歐幾裏得幾何、倣射幾何、射影幾何、拓撲幾何所髮生的變換大體是對應的.
대시각은유진행탁복성질적연구화분석시은유연구적일개신과제.시각은유지기본체화유체도능용시각기관감지적나사은유;탁복성질지탁복학소설적평면궤하도형재련속변환하보지불변저일성질.은유적일개특정표현위“본체역시유체역”,즉유체대우본체구유탁복성질적불변성;유체여본체시동배적화공상적,저취체현료은유재변환하보지불변저일성질.공상표현위본체여유체시상동、상사、상응혹상관적;종관찰가지,저동덕국수학가극채인근거변환군재“애이랑근계화”제출적대궤하작출적분류:구궤리득궤하、방사궤하、사영궤하、탁복궤하소발생적변환대체시대응적.
Topological approach to visual metaphor is a new way to deal with metaphor. Visual metaphor refers to the kind of metaphor in which both the tenor and the vehicle are perceptual objects perceived by ocular organ. To-pologieal nature refers to the kind of property of spatial objects which shows invariance over continuous transforma- tion. The topological nature of metaphor is realized in the formula of 'Target (domain) is source (domain) ' , that is , the tenor and the vehicle are in a state of homomorphism and constitute a pair of universals, which demonstrate the states, respectively, of sameness, similarity, correspondence, and relevance. This will bring about to the meta- phor the property of invariance over transformation. These four states of universal are somewhat in correspondence to the four types of transformation in Euclidean geometry, affine geometry, projective geometry, and topological geom- etry, the classification of which was based on transformation group suggested by F. Klein in his famous Erlangen Program.