周口师范学院学报
週口師範學院學報
주구사범학원학보
Journal of Zhoukou Normal University
2014年
2期
22~23
,共null页
非算术Minkowski空间 范数 下确界
非算術Minkowski空間 範數 下確界
비산술Minkowski공간 범수 하학계
Ekeland's variational principle;complete quasi-metric space; w-distance;equilibrium problem
给出了非算术Minkowski空间范数的下确界的表达式.即inf{‖x+y‖|‖x‖|≥1,‖x-y‖≤1}≤√3;inf{‖x+y‖|‖x‖=‖y‖=‖x-y‖=1}≤√3.
給齣瞭非算術Minkowski空間範數的下確界的錶達式.即inf{‖x+y‖|‖x‖|≥1,‖x-y‖≤1}≤√3;inf{‖x+y‖|‖x‖=‖y‖=‖x-y‖=1}≤√3.
급출료비산술Minkowski공간범수적하학계적표체식.즉inf{‖x+y‖|‖x‖|≥1,‖x-y‖≤1}≤√3;inf{‖x+y‖|‖x‖=‖y‖=‖x-y‖=1}≤√3.
In this paper,we prove the Ekeland's variational principle of equilibrium problem in the setting of complete quasi-metric space with a w -distance.