心理科学
心理科學
심이과학
Psychological Science
2014年
3期
748~755
,共null页
抑郁症 计算机化治疗 效果元分析 元回归分析调节效应
抑鬱癥 計算機化治療 效果元分析 元迴歸分析調節效應
억욱증 계산궤화치료 효과원분석 원회귀분석조절효응
depression, computerized psychological treatments, effectiveness, meta - analysis, meta - regression analysis, moderating effect
运用元分析和元回归分析的方法考察抑郁症计算机化治疗的效果及其影响因素。来源于50篇文献,42项RCT研究的67个样本满足了元分析标准(N=7920)。结果发现:(1)整体效果量为.53,三个月追踪效果量为.14;6个月追踪效果量为.16;(2)在年龄段、抑郁严重程度、支持方式和测量量表四个亚组分析中,其效果量存在显著差异。干预方式、干预取向和分析方法对效果量的影响不显著;(3)出版年份显著影响治疗效果量,脱落率和干预单元数对整体效果量的影响不显著。结果表明:抑郁症的计算机化治疗具有中等的效果量;年龄段、抑郁严重程度、支持方式、测量量表和出版年份对其整体效果量有调节作用。将来抑郁症计算机化治疗的研究应重视上述调节变量对治疗效果的影响。
運用元分析和元迴歸分析的方法攷察抑鬱癥計算機化治療的效果及其影響因素。來源于50篇文獻,42項RCT研究的67箇樣本滿足瞭元分析標準(N=7920)。結果髮現:(1)整體效果量為.53,三箇月追蹤效果量為.14;6箇月追蹤效果量為.16;(2)在年齡段、抑鬱嚴重程度、支持方式和測量量錶四箇亞組分析中,其效果量存在顯著差異。榦預方式、榦預取嚮和分析方法對效果量的影響不顯著;(3)齣版年份顯著影響治療效果量,脫落率和榦預單元數對整體效果量的影響不顯著。結果錶明:抑鬱癥的計算機化治療具有中等的效果量;年齡段、抑鬱嚴重程度、支持方式、測量量錶和齣版年份對其整體效果量有調節作用。將來抑鬱癥計算機化治療的研究應重視上述調節變量對治療效果的影響。
운용원분석화원회귀분석적방법고찰억욱증계산궤화치료적효과급기영향인소。래원우50편문헌,42항RCT연구적67개양본만족료원분석표준(N=7920)。결과발현:(1)정체효과량위.53,삼개월추종효과량위.14;6개월추종효과량위.16;(2)재년령단、억욱엄중정도、지지방식화측량량표사개아조분석중,기효과량존재현저차이。간예방식、간예취향화분석방법대효과량적영향불현저;(3)출판년빈현저영향치료효과량,탈락솔화간예단원수대정체효과량적영향불현저。결과표명:억욱증적계산궤화치료구유중등적효과량;년령단、억욱엄중정도、지지방식、측량량표화출판년빈대기정체효과량유조절작용。장래억욱증계산궤화치료적연구응중시상술조절변량대치료효과적영향。
The purpose of this research is to investigate the effects and influential factors of computerized psychological treatments for depression. This research adopted the methods of meta - analysis and meta - regression analysis to carry out the literature search through the four major data - bases of PubMed, PsycINFO, Embase and Web of Science; 50 literatures were included in the meta - analysis e- ventually, including 42 randomized controlled trials and 67 samples for effective meta- analysis. The sample for the research is 7920 participants, 4208 participants for computerized intervention group and 3712 participants for the control group, respectively. The results suggest that: ( 1 ) The overall effects of computerized psychological treatments for depression is. 53, which is a medium effectiveness, the effectiveness for the subjects with 3 months tracking is . 14, while the one with 6 months tracking is . 16. (2) Significant differences are revealed in the subgroups analysis for age group, depression severity, support method and measure- ment scales. With a closer look at the subjects, we find out that the effectiveness for the youth group is relatively small (. 24), while the effectiveness for adult group is relatively large (. 59) ; the treatment effectiveness for the severe depression group is significantly higher than the non - severe group ( severe depression: d =. 73 ; non - severe depression: d =. 48, p =. 003 ). Significant differences are revealed in the treatment effectiveness for the 4 patterns of support ( Face to face support group : d =. 58 ; Email support: d =. 70 ; Phone support: d =. 46 ; no support, d =. 40, p =. 038). Significant differences of the effectiveness are also revealed in the treatment effectiveness for the two different kinds of treatments in the measurement scales ( BDI : d =. 63 ; CES - D : d =. 36, p =. 008 ). The differences are not significant in the analysis of the 3 subgroups : intervention pattern ( network : d =. 54 ; stand - alone PC : d =. 38, p =. 13 ), intervention orientation ( CBT: d =. 52 ; PST: d =. 48, p =. 55 ) and analytical methods ( full treatment: d =. 53 ; intention for treatment : d =. 53, p =. 97). In the total sample, the year of publication significantly affects the effectiveness of treatment ( B = -. 0273, p 〈. 001 ) ; the drop - out rate does not significantly affect the effectiveness of treatment for the total sample ( B =. 0028, p =. 12). (3) Publication bias may be seen in this study, but it is unreasonable to overthrow the existing conclusions. Conclusion: The computerized psychological treatments for depression manifests medium effectiveness; age group, severity of de- pression, support method, measurement scale and the year of publication are of regulatory role for the overall effective of treatment. Therefore, the research on computerized psychological treatments for depression in the future should pay attention to these regulatory var- iables for their effectiveness of treatment.