韶关学院学报
韶關學院學報
소관학원학보
Journal of Shaoguan University(Social Science Edition)
2014年
6期
5~10
,共null页
K最近邻 L2,1范数 分类器
K最近鄰 L2,1範數 分類器
K최근린 L2,1범수 분류기
KNN ; L2,1 norm; classifier
在模式分类中.基于旋转不变范数的回归分类器(RRC)最近得到广泛的应用.然而RRC的稀疏重构是建立在全体训练样本之上.当训练样本的数量很大时,计算的时耗比较大.同时,对稀疏程度的过度追求也在一定程度上影响了分类性能.基于K最近邻分类器提出了一类局部的基于K最近邻的L2,1范数稀疏回归分类器(KNN—SRC),该分类器比全局的RRC计算速度快,同时。利用K最近邻点代替全体训练样本,在一定程上避免了非同类的相似样本对测试样本的过度稀疏表示,从而提高分类性能.KNN—SRC的分类性能在UCI的Wine数据集和Yale人脸数据库上作了检测.测试结果表明KNN—SRC分类性能优于RRC.
在模式分類中.基于鏇轉不變範數的迴歸分類器(RRC)最近得到廣汎的應用.然而RRC的稀疏重構是建立在全體訓練樣本之上.噹訓練樣本的數量很大時,計算的時耗比較大.同時,對稀疏程度的過度追求也在一定程度上影響瞭分類性能.基于K最近鄰分類器提齣瞭一類跼部的基于K最近鄰的L2,1範數稀疏迴歸分類器(KNN—SRC),該分類器比全跼的RRC計算速度快,同時。利用K最近鄰點代替全體訓練樣本,在一定程上避免瞭非同類的相似樣本對測試樣本的過度稀疏錶示,從而提高分類性能.KNN—SRC的分類性能在UCI的Wine數據集和Yale人臉數據庫上作瞭檢測.測試結果錶明KNN—SRC分類性能優于RRC.
재모식분류중.기우선전불변범수적회귀분류기(RRC)최근득도엄범적응용.연이RRC적희소중구시건립재전체훈련양본지상.당훈련양본적수량흔대시,계산적시모비교대.동시,대희소정도적과도추구야재일정정도상영향료분류성능.기우K최근린분류기제출료일류국부적기우K최근린적L2,1범수희소회귀분류기(KNN—SRC),해분류기비전국적RRC계산속도쾌,동시。이용K최근린점대체전체훈련양본,재일정정상피면료비동류적상사양본대측시양본적과도희소표시,종이제고분류성능.KNN—SRC적분류성능재UCI적Wine수거집화Yale인검수거고상작료검측.측시결과표명KNN—SRC분류성능우우RRC.
The Rotational-invariant-norm-based Regression for Classification (RRC) has been developed and shows great potential for pattern classification. RRC is a global representation based method in that a testing sample is represented by all training samples. Thus, on the one hand, it is time-consuming when the number of training samples is large; on the other hand, with the extremely sparse reconstructive coefficients, RRC sometimes will lead to misclassifications. This paper presents a local RRC method, called KNN-SRC, which chooses K nearest neighbors of a testing sample from all training sample to represent the testing sample. Since K is much smaller compared to the total number of training samples, KNN-SRC is much faster than the global RRC. More importantly, when there exists a class formed by parts of objects among many classes of objects, taking the K nearest neighbors as the training samples can avoid the misclassification. The proposed KNN-SRC is tested using the UCI Wine dataset and the Yale face database. The experimental results show KNN-SRC is more effective and efficient than RRC and other competitive methods.