衡水学院学报
衡水學院學報
형수학원학보
Journal of Hengshui University
2014年
4期
23~26
,共null页
数值解 Runge-Kutta法 变步长的Runge-Kutta法 自适应
數值解 Runge-Kutta法 變步長的Runge-Kutta法 自適應
수치해 Runge-Kutta법 변보장적Runge-Kutta법 자괄응
numerical solution; Runge-Kutta Method; variable step Runge-Kutta method; self-adaption
根据一阶常微分方程数值解的收敛性与稳定性,从固步长的Runge-Kutta法出发,考虑变步长的Runge-Kutta法,讨论了3种改进算法,即折半步长Runge.Kutta法、Runge-Kutta-Fehlberg法和Zadunaisky方法.并且分别讨论了3种变步长的Runge-Kutta法的精度及效率.
根據一階常微分方程數值解的收斂性與穩定性,從固步長的Runge-Kutta法齣髮,攷慮變步長的Runge-Kutta法,討論瞭3種改進算法,即摺半步長Runge.Kutta法、Runge-Kutta-Fehlberg法和Zadunaisky方法.併且分彆討論瞭3種變步長的Runge-Kutta法的精度及效率.
근거일계상미분방정수치해적수렴성여은정성,종고보장적Runge-Kutta법출발,고필변보장적Runge-Kutta법,토론료3충개진산법,즉절반보장Runge.Kutta법、Runge-Kutta-Fehlberg법화Zadunaisky방법.병차분별토론료3충변보장적Runge-Kutta법적정도급효솔.
Based on the convergence and stability of the numerical solution of a differential equation, from a solid step Runge-Kutta method, it has considered variable step Runge-Kutta method. Three modified algorithm are discussed. They are step reduced by halfRunge-Kutta method, Runge-Kutta-Fehlberg method and Zadunaisky method. At the same time, the accuracy and efficiency of variable step Runge-Kutta method are discussed.