系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2014年
8期
1963~1970
,共null页
半参数 GARCH 广义Logistic变换 Beta核密度估计
半參數 GARCH 廣義Logistic變換 Beta覈密度估計
반삼수 GARCH 엄의Logistic변환 Beta핵밀도고계
semi-parametric; GARCH; generalized logistic transformation; Beta kernel estimation
针对金融资产收益率分布呈现的尖峰、厚尾及有偏的特点,沿袭变换核密度估计的思想,提出一种广义Logistic变换,对变换后的样本应用Beta核密度估计以消除边界偏差.模拟试验表明,该方法显著提高了对尖峰厚尾分布密度的估计精度.继而将该方法与参数化的GARCH设定相结合,建立一种半参数GARCH模型.该模型具有两个优点第一,基于变换核密度估计可更加准确地估计收益率的条件分布;第二,通过迭代提高了参数估计的稳健性.模拟试验表明,较之伪极大似然估计法和基于离散最大惩罚似然估计的半参数方法,该方法大大提高了参数估计的相对效率.对沪深300指数的实证研究验证了本文模型的有效性.
針對金融資產收益率分佈呈現的尖峰、厚尾及有偏的特點,沿襲變換覈密度估計的思想,提齣一種廣義Logistic變換,對變換後的樣本應用Beta覈密度估計以消除邊界偏差.模擬試驗錶明,該方法顯著提高瞭對尖峰厚尾分佈密度的估計精度.繼而將該方法與參數化的GARCH設定相結閤,建立一種半參數GARCH模型.該模型具有兩箇優點第一,基于變換覈密度估計可更加準確地估計收益率的條件分佈;第二,通過迭代提高瞭參數估計的穩健性.模擬試驗錶明,較之偽極大似然估計法和基于離散最大懲罰似然估計的半參數方法,該方法大大提高瞭參數估計的相對效率.對滬深300指數的實證研究驗證瞭本文模型的有效性.
침대금융자산수익솔분포정현적첨봉、후미급유편적특점,연습변환핵밀도고계적사상,제출일충엄의Logistic변환,대변환후적양본응용Beta핵밀도고계이소제변계편차.모의시험표명,해방법현저제고료대첨봉후미분포밀도적고계정도.계이장해방법여삼수화적GARCH설정상결합,건립일충반삼수GARCH모형.해모형구유량개우점제일,기우변환핵밀도고계가경가준학지고계수익솔적조건분포;제이,통과질대제고료삼수고계적은건성.모의시험표명,교지위겁대사연고계법화기우리산최대징벌사연고계적반삼수방법,해방법대대제고료삼수고계적상대효솔.대호심300지수적실증연구험증료본문모형적유효성.
In allusion to the leptokurtosis, fat-tail and skewness of the distribution of financial returns, thispaper follows the transformed kernel density estimation, proposing a generalized logistic transformation,and beta kernel estimation is then employed for the transformed data in order to eliminate boundary bias.Simulation experiments show that the proposed method considerably improves the accuracy of the densityestimation for peaked and fat-tailed distributions. A semi-parametric GARCH model is constructed bycombining the approach with parametric GARCH settings. This semi-parametric model has two advan-tages first, it can estimate the conditional density more accurately based on the proposed transformedkernel density estiination; second, it improves the robustness of estimation through iterations. Simulationstudies show that, compared with quasi maximum likelihood estimation and the semi-parametric methodbased on discrete maximum penalized likelihood estimation, the method proposed is more efficient. Em-pirical research with CSI 300 index verifies the validity of the model.