系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2014年
10期
2591~2599
,共null页
稳定双边匹配 心理行为 偏好序值 失望理论 优化模型
穩定雙邊匹配 心理行為 偏好序值 失望理論 優化模型
은정쌍변필배 심리행위 편호서치 실망이론 우화모형
stable two-sided matching; psychological behavior; preference ordinal number; disappointment theory; optimization model
在双边匹配中,双方主体的心理感知是不可忽视的重要因素,如何依据行为决策理论描述双方主体的心理行为并将其引入到双边匹配模型中,以往这方面的研究很少被关注.在本文中,针对双方主体给出偏好序值信息的双边匹配问题,给出了一种考虑双方主体心理行为的稳定双边匹配方法.首先将双方主体给出的偏好序值转化为偏好效用;然后依据失望理论,将主体的偏好效用转化为用以描述主体对与对方主体相匹配的满意程度的感知效用;进而在稳定匹配约束条件下,以每方主体感知效用之和最大为目标,构建了双边匹配的多目标优化模型,并使用基于隶属函数的加权和方法将多目标优化模型转换为单目标优化模型,通过模型求解可得到最优双边匹配结果.最后,通过一个算例说明了提出方法的实用性和有效性.
在雙邊匹配中,雙方主體的心理感知是不可忽視的重要因素,如何依據行為決策理論描述雙方主體的心理行為併將其引入到雙邊匹配模型中,以往這方麵的研究很少被關註.在本文中,針對雙方主體給齣偏好序值信息的雙邊匹配問題,給齣瞭一種攷慮雙方主體心理行為的穩定雙邊匹配方法.首先將雙方主體給齣的偏好序值轉化為偏好效用;然後依據失望理論,將主體的偏好效用轉化為用以描述主體對與對方主體相匹配的滿意程度的感知效用;進而在穩定匹配約束條件下,以每方主體感知效用之和最大為目標,構建瞭雙邊匹配的多目標優化模型,併使用基于隸屬函數的加權和方法將多目標優化模型轉換為單目標優化模型,通過模型求解可得到最優雙邊匹配結果.最後,通過一箇算例說明瞭提齣方法的實用性和有效性.
재쌍변필배중,쌍방주체적심리감지시불가홀시적중요인소,여하의거행위결책이론묘술쌍방주체적심리행위병장기인입도쌍변필배모형중,이왕저방면적연구흔소피관주.재본문중,침대쌍방주체급출편호서치신식적쌍변필배문제,급출료일충고필쌍방주체심리행위적은정쌍변필배방법.수선장쌍방주체급출적편호서치전화위편호효용;연후의거실망이론,장주체적편호효용전화위용이묘술주체대여대방주체상필배적만의정도적감지효용;진이재은정필배약속조건하,이매방주체감지효용지화최대위목표,구건료쌍변필배적다목표우화모형,병사용기우대속함수적가권화방법장다목표우화모형전환위단목표우화모형,통과모형구해가득도최우쌍변필배결과.최후,통과일개산례설명료제출방법적실용성화유효성.
Psychological perception of agents on both sides is an important factor that should not be ignored in two sided matching problem. Few studies have focused on this issue that how to describe the psychological behavior of agents on both sides according to behavioral decision theory and introduce it into the two-sided matching model. In this paper, a stable two-sided matching method considering psychological behavior of agents on both sides is proposed to solve the two-sided matching problems, in which the preference ordinal number information is provided by agents on both sides. Firstly the preference ordinal numbers provided by agents on both sides are transformed into preference utility values. Then, according to disappointment theory, the perception utility values are calculated by modifying the preference utility values. For maximizing the sum of perception utility values of agents on each side, a multi-objective optimization two-sided matching model is developed considering the stable matching condition. The weighted sums method based on membership function is used to convert the multi-objective optimization model into a single-objective optimization model, and the optimal two-sided matching result can be obtained by solving the model. Finally, an example is given to illustrate the practicality and effectiveness of the proposed method.