系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2014年
12期
3138~3156
,共null页
直觉梯形模糊数 ITFB平均算子 MULTIMOORA 极小期望值 Choquet积分 多属性群决策
直覺梯形模糊數 ITFB平均算子 MULTIMOORA 極小期望值 Choquet積分 多屬性群決策
직각제형모호수 ITFB평균산자 MULTIMOORA 겁소기망치 Choquet적분 다속성군결책
intuitionistic trapezoidal fuzzy number; intuitionistic trapezoidal fuzzy Bonferroni mean oper-ator; MULTIMOORA; minimum expectation; Choquet integral; multiple attribute group decision making
提出基于直觉梯形模糊数(intuitionistic trapezoidal fuzzy number,ITFN)极小、极大期望值的序关系判别准则,并引入风险系数构建ITFN相对完善的带有决策者风险偏好的运算规则,在此基础上定义直觉梯形模糊Bonferroni(intuitionistic trapezoidal fuzzy Bonferroni,ITFB)平均算子,验证其相关性质.针对决策者之间、属性之间分别存在关联关系且权重均未知的多属性群决策问题,提出基于ITFN信息关联输入的改进群体MULTIMOORA决策方法.首先,构建直觉梯形模糊决策矩阵序列,予以标准化处理,并将其转化为极小期望决策矩阵序列;其次,综合利用基于熵权法和考虑决策者偏好关联的基于2-可加模糊测度与Choquet积分联合的主客观赋权法确定决策者权重及属性权重;最后,分别引入WITFB平均算子及ITFN的Hamming距离以改进传统MULTIMOORA决策方法,基于优势理论可对方案展开综合排序以确定最优方案.通过算例分析验证本文方法的可行性及有效性.
提齣基于直覺梯形模糊數(intuitionistic trapezoidal fuzzy number,ITFN)極小、極大期望值的序關繫判彆準則,併引入風險繫數構建ITFN相對完善的帶有決策者風險偏好的運算規則,在此基礎上定義直覺梯形模糊Bonferroni(intuitionistic trapezoidal fuzzy Bonferroni,ITFB)平均算子,驗證其相關性質.針對決策者之間、屬性之間分彆存在關聯關繫且權重均未知的多屬性群決策問題,提齣基于ITFN信息關聯輸入的改進群體MULTIMOORA決策方法.首先,構建直覺梯形模糊決策矩陣序列,予以標準化處理,併將其轉化為極小期望決策矩陣序列;其次,綜閤利用基于熵權法和攷慮決策者偏好關聯的基于2-可加模糊測度與Choquet積分聯閤的主客觀賦權法確定決策者權重及屬性權重;最後,分彆引入WITFB平均算子及ITFN的Hamming距離以改進傳統MULTIMOORA決策方法,基于優勢理論可對方案展開綜閤排序以確定最優方案.通過算例分析驗證本文方法的可行性及有效性.
제출기우직각제형모호수(intuitionistic trapezoidal fuzzy number,ITFN)겁소、겁대기망치적서관계판별준칙,병인입풍험계수구건ITFN상대완선적대유결책자풍험편호적운산규칙,재차기출상정의직각제형모호Bonferroni(intuitionistic trapezoidal fuzzy Bonferroni,ITFB)평균산자,험증기상관성질.침대결책자지간、속성지간분별존재관련관계차권중균미지적다속성군결책문제,제출기우ITFN신식관련수입적개진군체MULTIMOORA결책방법.수선,구건직각제형모호결책구진서렬,여이표준화처리,병장기전화위겁소기망결책구진서렬;기차,종합이용기우적권법화고필결책자편호관련적기우2-가가모호측도여Choquet적분연합적주객관부권법학정결책자권중급속성권중;최후,분별인입WITFB평균산자급ITFN적Hamming거리이개진전통MULTIMOORA결책방법,기우우세이론가대방안전개종합배서이학정최우방안.통과산례분석험증본문방법적가행성급유효성.
A ranking method of intuitionistic trapezoidal fuzzy numbers (ITFNs) is proposed based on the notions of a minimum expectation and a maximum expectation. Considering risk preferences of de- cision makers, a novel concept of a risk coefficient is introduced to construct improved operational laws of ITFNs. Furthermore, an intuitionistic trapezoidal fuzzy Bonferroni (ITFB) mean operator is proposed based on the improved operational laws, and then the relative properties of the ITFB mean operator are investigated. With respect to a multi-attribute group decision making problem, in which decision-makers are interdependent, attributes are interdependent, and decision-makers' weights and attributes' weights are both unknown, an improved MULTIMOORA approach for group decision making of interdependent ITFNs inputs is proposed. In this approach, firstly, a set of intuitionistic trapezoidal fuzzy decision ma- trixes is constructed, and then a set of normalized minimum expectation decision matrixes is obtained by calculating the minimum expectation one corresponding to each intuitionistic trapezoidal fuzzy decision matrixes. Secondly, in order to determine decision-makers' weights and attributes' weights, an entropy weight approach for determining the attributes' weights associated with each decision-maker is integrated into an objective and subjective synthetic approach, which has considered interactions of decision-makers' preferences, for obtaining decision-makers' weights based on the combination of a 2-additive fuzzy measureand a Choquet integral. Finally, a weighted ITFB mean operator and a Hamming distance of ITFNs are respectively introduced to improve the traditional MULTIMOORA approach, the improved MULTI- MOORA approach is employed to obtain a ranking of alternatives corresponding to each one of three ordering approach, and then a dominance theory is utilized to summarize the three rankings into a single one. A practical case is used to illustrate the validity and feasibility of the proposed approach.