心理学报
心理學報
심이학보
Acta Psychologica Sinica
2014年
12期
1910~1922
,共null页
认知诊断理论 计算机化自适应测验 测量精度 项目曝光率 内容约束
認知診斷理論 計算機化自適應測驗 測量精度 項目曝光率 內容約束
인지진단이론 계산궤화자괄응측험 측량정도 항목폭광솔 내용약속
cognitive diagnostic theory; computerized adaptive testing; measurement accuracy; item exposure rate; content constraints.
项目曝光控制和内容约束关系到测验安全、测验的信度和效度,是计算机化自适应测验(Computerized Adaptive Testing,CAT)中两类重要的j}统计约束条件。本文在认知诊断CAT中针对内容约束和项目曝光控制要求,运用5种方法选择测验项目。它们分别是:(1)Monte Carlo方法与项目合格方法相结合,记为MC—IE;(2)Monte Carlo方法与最大优先指标方法相结合,记为MC.MPI;(3)Monte Carlo方法与限制阈值方法相结合,记为MC.RT;(4)Monte Carlo方法与限制进度指标方法相结合,记为MC.RPG以及(5)Monte Carlo方法与最大后验概率方法相结合,记为MC.PP。然后通过在线性、收敛、发散、无结构和独立五种属性结构下构建题库并运用重参化融融统和模型模拟被试反应比较它们的选题表现。研究发现,(1)相同选题方法在不同属性结构下项目曝光率的分布类似,测量精度按线性、收敛、发散、无结构和独立结构的顺序依次降低;(2)相同属性结构下,不同方法的测量精度高低依次为MC.PP、MC.IE、MC.RT、MC.MPI和MC.RPG方法;项目曝光均匀性优劣依次为MC.RPG、MC.MPI、MC.RT、MC.IE和MC.PP方法。统一量纲值表明,MC.RPG方法的综合表现最好,MC.MPI方法的表现次之。
項目曝光控製和內容約束關繫到測驗安全、測驗的信度和效度,是計算機化自適應測驗(Computerized Adaptive Testing,CAT)中兩類重要的j}統計約束條件。本文在認知診斷CAT中針對內容約束和項目曝光控製要求,運用5種方法選擇測驗項目。它們分彆是:(1)Monte Carlo方法與項目閤格方法相結閤,記為MC—IE;(2)Monte Carlo方法與最大優先指標方法相結閤,記為MC.MPI;(3)Monte Carlo方法與限製閾值方法相結閤,記為MC.RT;(4)Monte Carlo方法與限製進度指標方法相結閤,記為MC.RPG以及(5)Monte Carlo方法與最大後驗概率方法相結閤,記為MC.PP。然後通過在線性、收斂、髮散、無結構和獨立五種屬性結構下構建題庫併運用重參化融融統和模型模擬被試反應比較它們的選題錶現。研究髮現,(1)相同選題方法在不同屬性結構下項目曝光率的分佈類似,測量精度按線性、收斂、髮散、無結構和獨立結構的順序依次降低;(2)相同屬性結構下,不同方法的測量精度高低依次為MC.PP、MC.IE、MC.RT、MC.MPI和MC.RPG方法;項目曝光均勻性優劣依次為MC.RPG、MC.MPI、MC.RT、MC.IE和MC.PP方法。統一量綱值錶明,MC.RPG方法的綜閤錶現最好,MC.MPI方法的錶現次之。
항목폭광공제화내용약속관계도측험안전、측험적신도화효도,시계산궤화자괄응측험(Computerized Adaptive Testing,CAT)중량류중요적j}통계약속조건。본문재인지진단CAT중침대내용약속화항목폭광공제요구,운용5충방법선택측험항목。타문분별시:(1)Monte Carlo방법여항목합격방법상결합,기위MC—IE;(2)Monte Carlo방법여최대우선지표방법상결합,기위MC.MPI;(3)Monte Carlo방법여한제역치방법상결합,기위MC.RT;(4)Monte Carlo방법여한제진도지표방법상결합,기위MC.RPG이급(5)Monte Carlo방법여최대후험개솔방법상결합,기위MC.PP。연후통과재선성、수렴、발산、무결구화독립오충속성결구하구건제고병운용중삼화융융통화모형모의피시반응비교타문적선제표현。연구발현,(1)상동선제방법재불동속성결구하항목폭광솔적분포유사,측량정도안선성、수렴、발산、무결구화독립결구적순서의차강저;(2)상동속성결구하,불동방법적측량정도고저의차위MC.PP、MC.IE、MC.RT、MC.MPI화MC.RPG방법;항목폭광균균성우렬의차위MC.RPG、MC.MPI、MC.RT、MC.IE화MC.PP방법。통일량강치표명,MC.RPG방법적종합표현최호,MC.MPI방법적표현차지。
It is well known that items in the bank of computerized adaptive testing (CAT) are always expected to be used equally. For one thing, a good deal of manpower and financial resources spent on constructing the item bank will surely be wasted if a large proportion of items are seldom exposed or even never be used. For the other, works for ensuring the test security and maintaining the item bank will become serious for test practitioners if items are exposed extremely skewed. In addition to controlling the item exposure, tests which assembled for different examinees are usually required to satisfy many constraints, such as (a) the well-proportional of each content domain; (b) the "enemy items" could not be appeared in the same test, and (c) the appropriate balance of item keys. Supposing some constraints are violated, it will give some unexpected reactions during the test and result in inaccuracy of trait estimates. Therefore, both item exposure control and content constraints are important non-statistical constraints. They have great influence on the test validity, measurement accuracy and comparability among examinees. So, they need to be incorporated into the designing of item selection for CAT in practical settings. When cognitive diagnostic theory is used in CAT, examinees can receive more detailed diagnostic information regarding their mastery of every attribute. Therefore, cognitive diagnostic CAT (CD-CAT) is a promising research area and has gained much attention because it integrates both the cognitive diagnostic method and adaptive testing. The present study compared the performances of five item selection methods in CD-CAT with item exposure control and content constraints. The item selection methods applied are (a) incorporating the Monte Carlo approach into the item eligibility approach (MC-IE); (b) incorporating themaximum priority index method into the Monte Carlo approach (MC-MPI); (c) incorporating the restrictive threshold method into the Monte Carlo approach (MC-RT); (d) incorporating the restrictive progressive method into the Monte Carlo approach (MC-RPG), and (e) incorporating the maximum post probability of knowledge states method into the Monte Carlo approach (MC-PP). The reparameterized unified model was implemented in the simulation experiments to generate item responses with respect to five item banks constructed according to attribute structures of linear, convergent, divergent, unstructured and independent, respectively. Results indicate that (a) the distributions of item exposure produced by the same item selection method in different item banks are similar, (b) the measurement precisions of each item selection method yield in attribute structures of linear, convergent, divergent, unstructured and independent are decreased gradually; (c) the performances of different item selection methods ordered by the measurement accuracy in each test condition are methods of the MC-PP, the MC-IE, the MC-MPI, the MC-RT, and the MC-RPG; their performances in terms of item exposure control are sorted in the opposite order. According to the value of uniformly dimensional, the MC-RPG method yields a best balance between item exposure control and test accuracy while satisfying some content constraints, and then followed by the MC-MPI method.