系统工程理论与实践
繫統工程理論與實踐
계통공정이론여실천
Systems Engineering—Theory & Practice
2015年
1期
1~16
,共null页
何娟 王建 蒋祥林 朱道立 刘晓星
何娟 王建 蔣祥林 硃道立 劉曉星
하연 왕건 장상림 주도립 류효성
供应链金融 组合优化 长期风险 Copula-CVaR-EVT 蒙特卡罗模拟
供應鏈金融 組閤優化 長期風險 Copula-CVaR-EVT 矇特卡囉模擬
공응련금융 조합우화 장기풍험 Copula-CVaR-EVT 몽특잡라모의
supply chain finance; portfolio optimization; long-term risk; Copula-CVaR-EVT; Monte Carlosimulation
为缓释当下供应链金融业务单一质物价格剧烈波动诱发的贷款集中度风险,异于股票、债券等金融资产组合基于短期风险预测优化框架,提出一类更具普适性的基于蒙特卡罗模拟法的质物组合长期风险预测方法,克服现有长期风险预测中视为基准的时间平方根法则缺陷;比对银行采取积极和保守投资策略,建立基于均值CVaR质物组合优化框架,引入改进均值方差优化框架进行对比分析.为准确测度质物组合长期CVaR,建立ARMA—EGARCH—EVT族模型以及多元t—Copula模型,刻画现货质物收益率呈现出的自相关性、“尖峰厚尾”以及波动集聚性等典型事实特征以及质物间的非线性相关结构;从模型层面和研究对象层面进行敏感性分析以验证模型的稳健性以及结论的可靠性.实证结果显示:长期风险预测视角下均值CVaR框架较改进的均值方差模型更具优势,为风险限额管理下的商业银行提供一种组合质物风险管理的新框架和新模式.
為緩釋噹下供應鏈金融業務單一質物價格劇烈波動誘髮的貸款集中度風險,異于股票、債券等金融資產組閤基于短期風險預測優化框架,提齣一類更具普適性的基于矇特卡囉模擬法的質物組閤長期風險預測方法,剋服現有長期風險預測中視為基準的時間平方根法則缺陷;比對銀行採取積極和保守投資策略,建立基于均值CVaR質物組閤優化框架,引入改進均值方差優化框架進行對比分析.為準確測度質物組閤長期CVaR,建立ARMA—EGARCH—EVT族模型以及多元t—Copula模型,刻畫現貨質物收益率呈現齣的自相關性、“尖峰厚尾”以及波動集聚性等典型事實特徵以及質物間的非線性相關結構;從模型層麵和研究對象層麵進行敏感性分析以驗證模型的穩健性以及結論的可靠性.實證結果顯示:長期風險預測視角下均值CVaR框架較改進的均值方差模型更具優勢,為風險限額管理下的商業銀行提供一種組閤質物風險管理的新框架和新模式.
위완석당하공응련금융업무단일질물개격극렬파동유발적대관집중도풍험,이우고표、채권등금융자산조합기우단기풍험예측우화광가,제출일류경구보괄성적기우몽특잡라모의법적질물조합장기풍험예측방법,극복현유장기풍험예측중시위기준적시간평방근법칙결함;비대은행채취적겁화보수투자책략,건립기우균치CVaR질물조합우화광가,인입개진균치방차우화광가진행대비분석.위준학측도질물조합장기CVaR,건립ARMA—EGARCH—EVT족모형이급다원t—Copula모형,각화현화질물수익솔정현출적자상관성、“첨봉후미”이급파동집취성등전형사실특정이급질물간적비선성상관결구;종모형층면화연구대상층면진행민감성분석이험증모형적은건성이급결론적가고성.실증결과현시:장기풍험예측시각하균치CVaR광가교개진적균치방차모형경구우세,위풍험한액관리하적상업은행제공일충조합질물풍험관리적신광가화신모식.
This paper proposes a mean-CVaR portfolio optimization framework for both conservative and aggressive investment strategies based on long-term risk prediction, which is different from financial assets such as stocks, bonds portfolio optimization framework based on the short-term risk prediction, so as to mitigate concentration risk due to sharp fluctuations of price of single inventory in supply chain finance. The long-term risk prediction based on Monte Carlo simulation of the inventory portfolio is proposed, and it is more practical than square root rule, which overcomes the shortcoming of the square root rule which heavily depends on the independent normal distribution. In methodology, AR(1)-EGARCH(1,1)-EVT model is set up to better depict the characteristics of the autocorrelation, heteroskedasticity, leptokurtosis and fat-tails of the marginal distribution, furthermore, the multivariate t-Copula function is introduced to model the dependency structure of individual pledged inventory. The empirical results show that, the mean-CVaR optimization framework outperforms the improved mean-variance from the perspective of long-term risk prediction, which are robust to the choice of risk window, confidence level, simulation times and sample size. In summary, this paper provides a new framework for managing the risk of portfolio in inventory financing practice for banks constrained by risk limitation.