北京大学学报:哲学社会科学版
北京大學學報:哲學社會科學版
북경대학학보:철학사회과학판
Journal of Peking University(Humanities and Social Sciences)
2015年
1期
116~124
,共null页
元语言 类推 数学基础 共相 家族相似
元語言 類推 數學基礎 共相 傢族相似
원어언 유추 수학기출 공상 가족상사
metalanguage, analogy, mathematical foundation, common phase, family resemblance
很多学者把维特根斯坦意义即用法的主张理解为词在语言游戏中的用法,其实更重要的方面是儿童在语言游戏中获得词义的过程和条件,即词义的获得不是解释而是训练。这也是维特根斯坦再次关注数学基础问题并重返哲学研究的主要驱动力之一。他由此提出意义即用法的观点,抛弃了早期词和对象对应的图像论观点。意义用法论具有重要的认识论价值,因为真正的元语言的意义只能通过使用获得,这样的元语言就是自然语言,而自然语言内部无法区分对象语言和元语言,不可能完全形式化,因此数学、哲学不可能有逻辑基础。但是,基于意义即用法论的语言游戏说、家族相似说并不能否认共相论的存在,自然语言是有规则的,获得自然语言规则的基本方式就是类推,类推也是人类必要的基本认识行为之一。承认类推就需要承认和类推相关的共相、原型、模型、隐喻等范畴。
很多學者把維特根斯坦意義即用法的主張理解為詞在語言遊戲中的用法,其實更重要的方麵是兒童在語言遊戲中穫得詞義的過程和條件,即詞義的穫得不是解釋而是訓練。這也是維特根斯坦再次關註數學基礎問題併重返哲學研究的主要驅動力之一。他由此提齣意義即用法的觀點,拋棄瞭早期詞和對象對應的圖像論觀點。意義用法論具有重要的認識論價值,因為真正的元語言的意義隻能通過使用穫得,這樣的元語言就是自然語言,而自然語言內部無法區分對象語言和元語言,不可能完全形式化,因此數學、哲學不可能有邏輯基礎。但是,基于意義即用法論的語言遊戲說、傢族相似說併不能否認共相論的存在,自然語言是有規則的,穫得自然語言規則的基本方式就是類推,類推也是人類必要的基本認識行為之一。承認類推就需要承認和類推相關的共相、原型、模型、隱喻等範疇。
흔다학자파유특근사탄의의즉용법적주장리해위사재어언유희중적용법,기실경중요적방면시인동재어언유희중획득사의적과정화조건,즉사의적획득불시해석이시훈련。저야시유특근사탄재차관주수학기출문제병중반철학연구적주요구동력지일。타유차제출의의즉용법적관점,포기료조기사화대상대응적도상론관점。의의용법론구유중요적인식론개치,인위진정적원어언적의의지능통과사용획득,저양적원어언취시자연어언,이자연어언내부무법구분대상어언화원어언,불가능완전형식화,인차수학、철학불가능유라집기출。단시,기우의의즉용법론적어언유희설、가족상사설병불능부인공상론적존재,자연어언시유규칙적,획득자연어언규칙적기본방식취시유추,유추야시인류필요적기본인식행위지일。승인유추취수요승인화유추상관적공상、원형、모형、은유등범주。
Many scholars believe it is important that the meaning of a word is best understood as their use in a given language-game, which was proposed in Wittgenstein' s Philosophical Investigations. We believe, what is more important exists in the process and condition that children get the meaning in a language game. Language teaching is not explanation, but training. This process and condition made Wittgenstein pay attention to mathematical foundation again and return to study philosophy. He proposed his word -usage theory and discarded his earlier picture theory that individual words in a language name objects, and sentences are combinations of such names. Wittgenstein' s word-usage theory has its important value for epistemology because the meaning of real metalanguage can be got only through usage. This kind of metalanguages are natural languages. The object language and metalanguage can't be differentiated in a natural language. Natural languages can' t be formalized completely. Therefore, both mathematics and philosophy have no logical foundation. However, the word-usage theory based on language games and family resemblances can' t negate the existence of the view of common phase. Any nature language has its rules, which are got by analogy. Analogy is one of the basic and necessary laws of cognition. To accept analogy needs to accept its related categories such as common phase, prototype, model and metaphor.