经济与管理评论
經濟與管理評論
경제여관리평론
Shandong Economy
2015年
2期
33~38
,共null页
CPI 混沌预测 逐步回归 BP神经网络 ARIMA模型
CPI 混沌預測 逐步迴歸 BP神經網絡 ARIMA模型
CPI 혼돈예측 축보회귀 BP신경망락 ARIMA모형
CPI; chaos prediction; stepwise regression; BP Neural Network; ARIMA Model
有效控制CPI关乎国计民生,但其变动的随机性增加了预测难度。在对混沌时间序列预测流程进行了梳理的基础上,首先采用最大Lyapunov指数法辨别CPI时序的混沌特性,运用混沌理论重构相空间,利用逐步回归分析和BP神经网络进行混沌预测,并将ARIMA模型作为比较预测模型,最后从预测和拟合两个方面对模型进行效果评价。综合分析结果显示:2014年CPI增长范围为[2.8%,5.3%],变动幅度较大;2015年将高于4%;而2016年有望突破5%。该研究为CPI短期预测提供了较为可靠的方法,且预测结果可成为政府宏观调控政策的科学依据。
有效控製CPI關乎國計民生,但其變動的隨機性增加瞭預測難度。在對混沌時間序列預測流程進行瞭梳理的基礎上,首先採用最大Lyapunov指數法辨彆CPI時序的混沌特性,運用混沌理論重構相空間,利用逐步迴歸分析和BP神經網絡進行混沌預測,併將ARIMA模型作為比較預測模型,最後從預測和擬閤兩箇方麵對模型進行效果評價。綜閤分析結果顯示:2014年CPI增長範圍為[2.8%,5.3%],變動幅度較大;2015年將高于4%;而2016年有望突破5%。該研究為CPI短期預測提供瞭較為可靠的方法,且預測結果可成為政府宏觀調控政策的科學依據。
유효공제CPI관호국계민생,단기변동적수궤성증가료예측난도。재대혼돈시간서렬예측류정진행료소리적기출상,수선채용최대Lyapunov지수법변별CPI시서적혼돈특성,운용혼돈이론중구상공간,이용축보회귀분석화BP신경망락진행혼돈예측,병장ARIMA모형작위비교예측모형,최후종예측화의합량개방면대모형진행효과평개。종합분석결과현시:2014년CPI증장범위위[2.8%,5.3%],변동폭도교대;2015년장고우4%;이2016년유망돌파5%。해연구위CPI단기예측제공료교위가고적방법,차예측결과가성위정부굉관조공정책적과학의거。
Effective control of CPI is vital to national economy and people's livelihood,yet its random movements increase the difficulty of predicting.Based on the summary the process of chaotic time series prediction,this paper first distinguishes the chaotic characteris-tics of CPI time sequence by using the method of the maximum Lyapunov index.Chaos theory is also utilized to reconstruct the phase space.Next,Chaos prediction is conducted under stepwise regression analysis and BP neural network,while ARIMA forecasting model is used as a comparison prediction model.Finally,the effect of the model is evaluated from both aspects of prediction and matching. The comprehensive analysis shows:CPI growth ranges from 2.8%to 5.3%in 2014,which is a considerable range.CPI will be higher than 4% in 2015 and hopefully exceeds 5%in 2016.The study provides a more reliable method for the short-term forecasts of CPI. The prediction results can be a scientific basis for government's implementation of various macro-control policies.