心理学报
心理學報
심이학보
Acta Psychologica Sinica
2015年
2期
273~282
,共null页
喻晓锋 罗照盛 秦春影 高椿雷 李喻骏
喻曉鋒 囉照盛 秦春影 高椿雷 李喻駿
유효봉 라조성 진춘영 고춘뢰 리유준
认知诊断评价 Q矩阵 T矩阵 联合估计 DINA模型
認知診斷評價 Q矩陣 T矩陣 聯閤估計 DINA模型
인지진단평개 Q구진 T구진 연합고계 DINA모형
cognitive diagnostic assessment; Q-matrix; T-matrix; joint estimate; DINA model
Q矩阵在认知诊断的模型参数估计和诊断分类中起着重要作用。本文通过研究Liu等人的方法,设计了同时估计项目参数和Q矩阵的联合估计算法。在DINA模型下,对项目参数未知时开展模拟研究。研究假设项目为20个,考察的属性个数分别是3、4和5,初始Q矩阵中分别存在3、4和5个属性界定错误的项目。结果表明,联合估计算法能在错误的初始Q矩阵基础上以很高的概率得到正确的Q矩阵。另外,当专家认定测验的属性个数存在错误时,该方法推导的Q矩阵和模型参数能提供很好的鉴别Q矩阵错误的信息。
Q矩陣在認知診斷的模型參數估計和診斷分類中起著重要作用。本文通過研究Liu等人的方法,設計瞭同時估計項目參數和Q矩陣的聯閤估計算法。在DINA模型下,對項目參數未知時開展模擬研究。研究假設項目為20箇,攷察的屬性箇數分彆是3、4和5,初始Q矩陣中分彆存在3、4和5箇屬性界定錯誤的項目。結果錶明,聯閤估計算法能在錯誤的初始Q矩陣基礎上以很高的概率得到正確的Q矩陣。另外,噹專傢認定測驗的屬性箇數存在錯誤時,該方法推導的Q矩陣和模型參數能提供很好的鑒彆Q矩陣錯誤的信息。
Q구진재인지진단적모형삼수고계화진단분류중기착중요작용。본문통과연구Liu등인적방법,설계료동시고계항목삼수화Q구진적연합고계산법。재DINA모형하,대항목삼수미지시개전모의연구。연구가설항목위20개,고찰적속성개수분별시3、4화5,초시Q구진중분별존재3、4화5개속성계정착오적항목。결과표명,연합고계산법능재착오적초시Q구진기출상이흔고적개솔득도정학적Q구진。령외,당전가인정측험적속성개수존재착오시,해방법추도적Q구진화모형삼수능제공흔호적감별Q구진착오적신식。
Q-matrix is an important component of cognitive diagnostic assessment, which represents the item-attribute relationships. Cognitive diagnostic assessment infers attribute mastery patterns of respondents in the testing field based on item responses. Item responses in the assessment are observable, but respondents attribute mastery patterns are potential, not observable. Q-matrix plays the role of a bridge in cognitive diagnostic assessment. Therefore, Q-matrix impact the accuracy of cognitive diagnostic assessment greatly. Research on the effect of parameter estimation and classification accuracy caused by the error in Q-matrix already existed, and it turned out that Q-matrix gotten from expert definition or experience was more easily subject to be affected by subjective factors, lead to a misspecified Q-matrix. Under this circumstance, it's urgently needed to find more objective Q-matrix inference methods. This paper started from this consideration, carried out further research on the Q-matrix inference from response data based on the research of Liu, Xu and Ying(2012), and modified the Liu et al. algorithm, designed a joint estimate item parameters and Q-matrix algorithm. The joint estimate algorithm can estimate item parameters and the Q-matrix simultaneously. In simulations, considered different Q-matrix(attribute-number is 3,4 and 5), different sample size(500, 1000, 2000 and 4000), different number of error items(3,4 and 5), the attribute mastery pattern of the sample followed an uniform distribution, and the item parameters followed an uniform distribution with interval [0.05,0.25]. When item parameters were unknown, item number was 20, and item attributes was 3, 4 or 5, based on the initial Q-matrix, and the joint estimate algorithm can get the true Q-matrix with a high probability and item parameters with small deviation, even the sample size is relatively small(such as 300), and the misspecified-item number is relatively large(such as 6). Furthermore, when the number of item attribute was misspecified by experts, in other words, the Q-matrix lacked a required attribute or added a redundant attribute, this would lead to incorrectness of all items, and the joint estimate algorithm will provide reliable information to infer the true Q-matrix. The results indicated that:(1) The joint estimate algorithm had a good performance and suitable for practical application when some item attribute vectors misspecified.(2) The joint estimate algorithm could provide useful information when added a redundant attribute or lacked a required attribute in Q-matrix, and then amended and estimated the Q-matrix.