工业技术经济
工業技術經濟
공업기술경제
Industrial Technology & Economy
2015年
4期
98~104
,共null页
遗传算法 BP神经网络 技术创新能力
遺傳算法 BP神經網絡 技術創新能力
유전산법 BP신경망락 기술창신능력
genetic algorithm;BP neural network;technological innovation capability
针对当前技术创新能力评价方法大多建立在线性模型的基础上,且技术创新能力影响因素较多,可能存在多重共线性的缺陷,本文提出了遗传算法优化的BP神经网络模型。GA-BP神经网络模型在以下几方面做出了改进:①利用了神经网络强大的非线性关系映射能力,避免了传统线性模型的缺陷。②利用遗传算法对评价指标进行了降维,去除了多重共线性。③使用遗传算法从全局搜寻BP神经网络权值和阀值向量,优化了BP神经网络模型,避免了BP神经网络由于使用梯度下降算法,容易陷入局部最优解的缺陷。本文最后选取2008~2013年全国31个省市规模以上工业企业技术创新能力124条数据作为训练样本,31条数据作为测试样本,分别测试遗传算法优化的BP神经网络和未优化的BP神经网络,测试结果显示遗传算法优化的BP神经网络模型预测准确率高于未优化的BP神经网络模型。
針對噹前技術創新能力評價方法大多建立在線性模型的基礎上,且技術創新能力影響因素較多,可能存在多重共線性的缺陷,本文提齣瞭遺傳算法優化的BP神經網絡模型。GA-BP神經網絡模型在以下幾方麵做齣瞭改進:①利用瞭神經網絡彊大的非線性關繫映射能力,避免瞭傳統線性模型的缺陷。②利用遺傳算法對評價指標進行瞭降維,去除瞭多重共線性。③使用遺傳算法從全跼搜尋BP神經網絡權值和閥值嚮量,優化瞭BP神經網絡模型,避免瞭BP神經網絡由于使用梯度下降算法,容易陷入跼部最優解的缺陷。本文最後選取2008~2013年全國31箇省市規模以上工業企業技術創新能力124條數據作為訓練樣本,31條數據作為測試樣本,分彆測試遺傳算法優化的BP神經網絡和未優化的BP神經網絡,測試結果顯示遺傳算法優化的BP神經網絡模型預測準確率高于未優化的BP神經網絡模型。
침대당전기술창신능력평개방법대다건립재선성모형적기출상,차기술창신능력영향인소교다,가능존재다중공선성적결함,본문제출료유전산법우화적BP신경망락모형。GA-BP신경망락모형재이하궤방면주출료개진:①이용료신경망락강대적비선성관계영사능력,피면료전통선성모형적결함。②이용유전산법대평개지표진행료강유,거제료다중공선성。③사용유전산법종전국수심BP신경망락권치화벌치향량,우화료BP신경망락모형,피면료BP신경망락유우사용제도하강산법,용역함입국부최우해적결함。본문최후선취2008~2013년전국31개성시규모이상공업기업기술창신능력124조수거작위훈련양본,31조수거작위측시양본,분별측시유전산법우화적BP신경망락화미우화적BP신경망락,측시결과현시유전산법우화적BP신경망락모형예측준학솔고우미우화적BP신경망락모형。
At present , most technological innovation ability evaluation methods are established on the basis of the linear model , and the factors that affect the technological innovation capability are many , the multicollinearity may exist among variables . According to the above two reasons , the GA-BP neural network model was proposed in this paper . Genetic algorithm (GA) optimized the BP neural net-work model in the following aspects: ①neural network has the strong ability of dealing with nonlinear system . It avoided the disadvantages of the linear model . ②In order to remove the multicollinearity , the genetic algorithm was used to reduce evaluation index dimension . ③BP neural network used gradient descent algorithm that modified weights and thresholds , and it was easy to fall into local optimal solution . Genetic algorithm was introduced to search the BP neural network weights and thresholds in global scope . Finally , the technical innovation data of industrial enterprises above designated size in the 31 provinces , and cities were selected from year 2008 to 2013 , 124 of them are regard as training samples , others as testing samples . Empirical conclusion shows that forecast accuracy of GA -BP neural network is higher than BP neural network .