中国高教研究
中國高教研究
중국고교연구
China Higher Education Research
2015年
5期
95~99
,共null页
大数据 专业设置 机制创新
大數據 專業設置 機製創新
대수거 전업설치 궤제창신
big data; major setting; mechanism innovation
大数据时代,数据获得日益便捷,通过对数据的挖掘和分析能够有效促进管理决策。增强过程控制和提升预测能力,具有较好的社会治理价值。当前,我国高职院校专业设置对口率低,岗位不匹配、校际同质化现象突出,究其原因,数据信息的缺乏削弱了职业教育与社会经济融合对接能力。基于此,高职院校要创新专业设置机制,建立由政府、行业(企业)、院校三方共同参与的。以数据信息为基础的专业设置模式,通过不同主体间数据信息的耦合协调,提升职业技术教育的社会适应性。具体而言.要做好四方面数据工作,即增强专业需求数据预测、实施过程数据监测、强化就业结果数据反馈.与此同时,推进以大数据为基础的专业设置决策机制创新。
大數據時代,數據穫得日益便捷,通過對數據的挖掘和分析能夠有效促進管理決策。增彊過程控製和提升預測能力,具有較好的社會治理價值。噹前,我國高職院校專業設置對口率低,崗位不匹配、校際同質化現象突齣,究其原因,數據信息的缺乏削弱瞭職業教育與社會經濟融閤對接能力。基于此,高職院校要創新專業設置機製,建立由政府、行業(企業)、院校三方共同參與的。以數據信息為基礎的專業設置模式,通過不同主體間數據信息的耦閤協調,提升職業技術教育的社會適應性。具體而言.要做好四方麵數據工作,即增彊專業需求數據預測、實施過程數據鑑測、彊化就業結果數據反饋.與此同時,推進以大數據為基礎的專業設置決策機製創新。
대수거시대,수거획득일익편첩,통과대수거적알굴화분석능구유효촉진관리결책。증강과정공제화제승예측능력,구유교호적사회치리개치。당전,아국고직원교전업설치대구솔저,강위불필배、교제동질화현상돌출,구기원인,수거신식적결핍삭약료직업교육여사회경제융합대접능력。기우차,고직원교요창신전업설치궤제,건립유정부、행업(기업)、원교삼방공동삼여적。이수거신식위기출적전업설치모식,통과불동주체간수거신식적우합협조,제승직업기술교육적사회괄응성。구체이언.요주호사방면수거공작,즉증강전업수구수거예측、실시과정수거감측、강화취업결과수거반궤.여차동시,추진이대수거위기출적전업설치결책궤제창신。
In the era of big data, data acquisition has become increasingly convenient. Data excavation and analysis can effectively promote the management decision, strengthen the process control and improve the prediction ability, as well as create better value of social governance. Recently, it exists such an outstanding phenomenon in the higher vocational colleges as low job suited rate, unmatched post and intercollegiate homogeneity. The reasons might be that the lack of data information has weakened the docking between the vocational education and the social economic integration. Based on this, this paper argues that, the higher vocational colleges need to innovate the major setting mechanism, establish the major setting model with the tripartite participation of the government, industry (enterprises) and colleges on the basis of the data information, and improve the social adaptability of the vocational and technical education through the coupling coordination of data information among different subjects. Specifically, we need to do a good data job from four aspects, namely, enhancing the data prediction of major demands, implementing the monitoring of process data, strengthening the data feedback of employment results, and promoting the decision-making mechanism innovation of major setting on the basis of big data.