化工学报
化工學報
화공학보
CIESC Jorunal
2015年
9期
3570-3579
,共10页
翟建%刘育良%李鲁闽%王秋圆%孙兰义
翟建%劉育良%李魯閩%王鞦圓%孫蘭義
적건%류육량%리로민%왕추원%손란의
萃取%隔壁塔%差压热集成%遗传算法%节能%优化
萃取%隔壁塔%差壓熱集成%遺傳算法%節能%優化
췌취%격벽탑%차압열집성%유전산법%절능%우화
extraction%dividing wall column%heat integrated pressure-swing%genetic algorithm%energy savings%optimization
以糠醛作为萃取剂分别使用常规萃取精馏、隔壁塔萃取精馏和差压热集成萃取精馏对苯和环己烷体系进行分离研究,使用流程模拟软件 Aspen Plus V8.4 进行模拟分析,对初步设计的三稳态流程,分别进行灵敏度分析,使用多目标遗传算法对过程进行整体优化以获得最优结构参数.结果表明,隔壁塔萃取精馏和差压热集成萃取精馏相对于常规萃取精馏所需再沸器热负荷可分别减小 21.5%和 15.7%.对三工艺流程进行经济性分析,发现与常规流程相比,隔壁塔萃取精馏的年总费用下降了 6.0%,而差压热集成萃取精馏年总费用增加了 50.8%,为萃取精馏分离苯/环己烷共沸体系工业化设计提供了理论依据和设计参考.
以糠醛作為萃取劑分彆使用常規萃取精餾、隔壁塔萃取精餾和差壓熱集成萃取精餾對苯和環己烷體繫進行分離研究,使用流程模擬軟件 Aspen Plus V8.4 進行模擬分析,對初步設計的三穩態流程,分彆進行靈敏度分析,使用多目標遺傳算法對過程進行整體優化以穫得最優結構參數.結果錶明,隔壁塔萃取精餾和差壓熱集成萃取精餾相對于常規萃取精餾所需再沸器熱負荷可分彆減小 21.5%和 15.7%.對三工藝流程進行經濟性分析,髮現與常規流程相比,隔壁塔萃取精餾的年總費用下降瞭 6.0%,而差壓熱集成萃取精餾年總費用增加瞭 50.8%,為萃取精餾分離苯/環己烷共沸體繫工業化設計提供瞭理論依據和設計參攷.
이강철작위췌취제분별사용상규췌취정류、격벽탑췌취정류화차압열집성췌취정류대분화배기완체계진행분리연구,사용류정모의연건 Aspen Plus V8.4 진행모의분석,대초보설계적삼은태류정,분별진행령민도분석,사용다목표유전산법대과정진행정체우화이획득최우결구삼수.결과표명,격벽탑췌취정류화차압열집성췌취정류상대우상규췌취정류소수재비기열부하가분별감소 21.5%화 15.7%.대삼공예류정진행경제성분석,발현여상규류정상비,격벽탑췌취정류적년총비용하강료 6.0%,이차압열집성췌취정류년총비용증가료 50.8%,위췌취정류분리분/배기완공비체계공업화설계제공료이론의거화설계삼고.
The separation of benzene and cyclohexane with furfural as entrainer was studied using conventional extractive distillation, extractive dividing wall column distillation and heat integrated pressure-swing extractive distillation. The three whole processes were simulated by commercial process simulator Aspen Plus V8.4. The sensitive analyses of all steady-state designs were carried out and the optimal flow sheets with minimum energy requirements have been established using the multi-objective genetic algorithm with constrains. Compared with the conventional configuration, the extractive dividing wall column distillation and heat integrated pressure-swing extractive distillation process with minimum heat duty of the reboiler presented the energy savings of 21.5% and 15.7%, respectively. The economic analysis was carried out to evaluate the economic feasibility of the three processes. The results clearly demonstrated that when compared with the conventional extractive distillation process, the total annual cost was reduced by 6.0% in the extractive dividing wall column and increased by 50.8%in the heat integrated pressure-swing extractive distillation, which provided a theory basis and design reference for the industrial design for extractive distillation process to separate azeotropic benzene and cyclohexane system.