化学反应工程与工艺
化學反應工程與工藝
화학반응공정여공예
Chemical Reaction Engineering and Technology
2015年
4期
330-336
,共7页
鞠耀明%张宽%丁慧勇%郑敏珠%丁兴%谢黎明
鞠耀明%張寬%丁慧勇%鄭敏珠%丁興%謝黎明
국요명%장관%정혜용%정민주%정흥%사려명
焦炉气%非催化部分氧化%合成气
焦爐氣%非催化部分氧化%閤成氣
초로기%비최화부분양화%합성기
coke oven gas%non-catalytic partial oxidation%syngas
基于Curran反应机理,采用 Chemkin 软件对贫氧条件下的焦炉气非催化部分氧化过程进行了模拟,并考察了反应温度、反应压力和氧气与焦炉气物质的量之比对焦炉气非催化部分氧化制合成气反应的影响.结果表明:该模型能较好地模拟工业操作条件下的焦炉气非催化部分氧化反应;焦炉气非催化部分氧化动力学时间尺度为毫秒级;反应温度越高,动力学时间越短,当温度提高至1 373 K后,动力学时间未见明显缩短;反应压力越大,动力学时间越短,当压力提高至3.0 MPa后,动力学时间未见明显缩短;氧气和焦炉气物质的量之比越大,动力学时间越短,但得到的合成气摩尔分数以及H2和CO物质的量之比也相应降低;当氧气和焦炉气物质的量之比增大至0.262后,合成气中H2和CO物质的量之比维持在2.0~2.5.
基于Curran反應機理,採用 Chemkin 軟件對貧氧條件下的焦爐氣非催化部分氧化過程進行瞭模擬,併攷察瞭反應溫度、反應壓力和氧氣與焦爐氣物質的量之比對焦爐氣非催化部分氧化製閤成氣反應的影響.結果錶明:該模型能較好地模擬工業操作條件下的焦爐氣非催化部分氧化反應;焦爐氣非催化部分氧化動力學時間呎度為毫秒級;反應溫度越高,動力學時間越短,噹溫度提高至1 373 K後,動力學時間未見明顯縮短;反應壓力越大,動力學時間越短,噹壓力提高至3.0 MPa後,動力學時間未見明顯縮短;氧氣和焦爐氣物質的量之比越大,動力學時間越短,但得到的閤成氣摩爾分數以及H2和CO物質的量之比也相應降低;噹氧氣和焦爐氣物質的量之比增大至0.262後,閤成氣中H2和CO物質的量之比維持在2.0~2.5.
기우Curran반응궤리,채용 Chemkin 연건대빈양조건하적초로기비최화부분양화과정진행료모의,병고찰료반응온도、반응압력화양기여초로기물질적량지비대초로기비최화부분양화제합성기반응적영향.결과표명:해모형능교호지모의공업조작조건하적초로기비최화부분양화반응;초로기비최화부분양화동역학시간척도위호초급;반응온도월고,동역학시간월단,당온도제고지1 373 K후,동역학시간미견명현축단;반응압력월대,동역학시간월단,당압력제고지3.0 MPa후,동역학시간미견명현축단;양기화초로기물질적량지비월대,동역학시간월단,단득도적합성기마이분수이급H2화CO물질적량지비야상응강저;당양기화초로기물질적량지비증대지0.262후,합성기중H2화CO물질적량지비유지재2.0~2.5.
Syngas production from coke oven gas(COG) with non-catalytic partial oxidation(NCPO) was simulated with Curran detailed reaction mechanism using Chemkin software. Concentration of the main species evolved with time and the effects of operation parameters, such as reaction temperature, reaction pressure and molar ratio of O2 to COG, on the dynamic time, syngas mole fraction and molar ratio of H2 to CO, were investigated. The simulation results showed that under the industrial relevant operating conditions, the simulated syngas(H2+CO) mole fraction and molar ratio of H2 to CO were in agreement with the industrial data, the scale of COG with NCPO dynamic time was ms. The higher the reaction temperature, the shorter dynamic time. At the temperature above 1 373 K, dynamic time did not reduced obviously. The bigger the reaction pressure, the shorter the dynamic time. After the pressure increase to 3.0 MPa, dynamic time reduced slightly. The higher the molar ratio of O2 to COG, the shorter the dynamic time, but the lower the syngas mole fraction and the molar ratio of H2 to CO. As the molar ratio of O2 to COG was more than 0.262, molar ratio of H2 to CO did not descend evidently, keep in the range of 2.0-2.5.