化工学报
化工學報
화공학보
CIESC Jorunal
2015年
9期
3753-3761
,共9页
香蕉茎秆纤维%生物质%超声预处理%脱胶率%半纤维素酶%果胶酶%制备%机械性能
香蕉莖稈纖維%生物質%超聲預處理%脫膠率%半纖維素酶%果膠酶%製備%機械性能
향초경간섬유%생물질%초성예처리%탈효솔%반섬유소매%과효매%제비%궤계성능
banana pseudostem fibers%biomass%ultrasonic pretreatment%degumming rate%hemicellulose%pectinase%preparation%mechanical properties
为了将生物质废弃物香蕉茎秆进行高值化利用,采用酶法脱胶工艺制备香蕉茎秆纤维.研究超声预处理工艺中频率、处理温度对香蕉茎秆脱胶率的影响,确定较佳的超声预处理工艺.将预处理后的香蕉茎秆粗纤维进行半纤维素酶、果胶酶脱胶,分别考察缓冲液 pH、酶浓度、反应温度对脱胶率的影响.结果表明:预处理工艺中超声处理的较佳频率为 40 kHz,温度为 70℃;酶法脱胶工艺中较佳的半纤维素酶缓冲液 pH 为 5.5,半纤维素酶浓度为 0.004 g·ml?1,反应温度为 50℃;较佳的果胶酶缓冲液 pH 为 6.0,果胶酶浓度为 0.003 g·ml?1,反应温度为55℃.采用傅里叶红外光谱(FTIR)、X 射线衍射(XRD)和扫描电镜(SEM)分析酶法较佳工艺制备的香蕉茎秆纤维的理化特性;并对其机械性能进行测试与分析.FTIR 及 XRD 结果表明:酶法较佳工艺制备的香蕉茎秆纤维去除了半纤维素和大部分果胶,相对结晶度为 66.4%;机械性能测试结果表明酶法较佳工艺制备的香蕉茎秆纤维的拉伸强度、杨氏模量和断裂伸长率分别是 118.48 MPa,15.15 GPa,0.67%.
為瞭將生物質廢棄物香蕉莖稈進行高值化利用,採用酶法脫膠工藝製備香蕉莖稈纖維.研究超聲預處理工藝中頻率、處理溫度對香蕉莖稈脫膠率的影響,確定較佳的超聲預處理工藝.將預處理後的香蕉莖稈粗纖維進行半纖維素酶、果膠酶脫膠,分彆攷察緩遲液 pH、酶濃度、反應溫度對脫膠率的影響.結果錶明:預處理工藝中超聲處理的較佳頻率為 40 kHz,溫度為 70℃;酶法脫膠工藝中較佳的半纖維素酶緩遲液 pH 為 5.5,半纖維素酶濃度為 0.004 g·ml?1,反應溫度為 50℃;較佳的果膠酶緩遲液 pH 為 6.0,果膠酶濃度為 0.003 g·ml?1,反應溫度為55℃.採用傅裏葉紅外光譜(FTIR)、X 射線衍射(XRD)和掃描電鏡(SEM)分析酶法較佳工藝製備的香蕉莖稈纖維的理化特性;併對其機械性能進行測試與分析.FTIR 及 XRD 結果錶明:酶法較佳工藝製備的香蕉莖稈纖維去除瞭半纖維素和大部分果膠,相對結晶度為 66.4%;機械性能測試結果錶明酶法較佳工藝製備的香蕉莖稈纖維的拉伸彊度、楊氏模量和斷裂伸長率分彆是 118.48 MPa,15.15 GPa,0.67%.
위료장생물질폐기물향초경간진행고치화이용,채용매법탈효공예제비향초경간섬유.연구초성예처리공예중빈솔、처리온도대향초경간탈효솔적영향,학정교가적초성예처리공예.장예처리후적향초경간조섬유진행반섬유소매、과효매탈효,분별고찰완충액 pH、매농도、반응온도대탈효솔적영향.결과표명:예처리공예중초성처리적교가빈솔위 40 kHz,온도위 70℃;매법탈효공예중교가적반섬유소매완충액 pH 위 5.5,반섬유소매농도위 0.004 g·ml?1,반응온도위 50℃;교가적과효매완충액 pH 위 6.0,과효매농도위 0.003 g·ml?1,반응온도위55℃.채용부리협홍외광보(FTIR)、X 사선연사(XRD)화소묘전경(SEM)분석매법교가공예제비적향초경간섬유적이화특성;병대기궤계성능진행측시여분석.FTIR 급 XRD 결과표명:매법교가공예제비적향초경간섬유거제료반섬유소화대부분과효,상대결정도위 66.4%;궤계성능측시결과표명매법교가공예제비적향초경간섬유적랍신강도、양씨모량화단렬신장솔분별시 118.48 MPa,15.15 GPa,0.67%.
In order to utilize the banana pseudostems, a rich biomass resource in Hainan, the fibers were extracted from banana pseudostem by enzyme treatment. In this work, the better process conditions of frequency and temperature in ultrasonic pretreatment were determined, and two enzymes, hemicellulase and pectinase, were used to remove pectin and hemicelluloses, and to loose the compact structure of fibers, respectively. The better degummed process conditions of the concentration of these two enzymes, reaction temperature and pH value in enzyme process were optimized in terms of degummed rate. The optimum parameters were determined as: the concentration of hemicellulase 0.004 g·ml?1, reaction temperature 50℃, pH value 5.5, concentration of pectinase 0.003 g·ml?1, reaction temperature 55℃ and pH value 6.0. Chemical characterization of the banana pseudostem fibers confirmed that the cellulose content was increased from 60% to 65% due to the application of enzyme treatments. The physicochemical properties of enzyme treated banana pseudostem fibers were analyzed by using the fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The tensile properties of enzyme treated banana pseudostem fibers were also investigated. The FTIR and XRD analyses of the enzyme treated banana pseudostem fibers showed an obvious reduction in amount of noncellulosic substances with a crystallinity index of 66.4%. Surface morphological studies using SEM revealed that the enzyme treated banana pseudostem fibers had a rougher surface with a lot of little pectin substance and exhibited brittle fracture. The tensile tests revealed that the tensile strength was about 118.48 MPa with Young's modulus of 15.15 GPa and elongation at break of 0.67%.