动力学与控制学报
動力學與控製學報
동역학여공제학보
Journal of Dynamics and Control
2015年
4期
246-249
,共4页
Whittaker方程%Birkhoff方程%离散变分方法
Whittaker方程%Birkhoff方程%離散變分方法
Whittaker방정%Birkhoff방정%리산변분방법
Whittaker equation%Birkhoff equations%discrete variational methods
本文在 Birkhoff 框架下,采用离散变分方法研究了非 Hamilton 系统-Whittaker 方程的数值解法,并通过和传统的 Runge-Kutta 方法进行比较,说明了在 Birkhoff 框架下研究非 Hamilton 系统可以得到更加可靠和精确的数值结果。
本文在 Birkhoff 框架下,採用離散變分方法研究瞭非 Hamilton 繫統-Whittaker 方程的數值解法,併通過和傳統的 Runge-Kutta 方法進行比較,說明瞭在 Birkhoff 框架下研究非 Hamilton 繫統可以得到更加可靠和精確的數值結果。
본문재 Birkhoff 광가하,채용리산변분방법연구료비 Hamilton 계통-Whittaker 방정적수치해법,병통과화전통적 Runge-Kutta 방법진행비교,설명료재 Birkhoff 광가하연구비 Hamilton 계통가이득도경가가고화정학적수치결과。
In this paper,the numerical algorithms of Whittaker equation,which is a non-Hamiltonian system, are researched by using the discrete variational method in the framework of Birkhoffian.Compared with Runge-Kutta method,the numerical results show that the more reliable and accurate numerical results are obtained when the non-Hamilton systems without simple symplectic structure are studied in the Birkhoffian framework.