南阳理工学院学报
南暘理工學院學報
남양리공학원학보
Journal of Nanyang Institute of Technology
2015年
4期
57-60
,共4页
模糊C均值%神经网络%TM遥感影像%纯净像元%自动分类
模糊C均值%神經網絡%TM遙感影像%純淨像元%自動分類
모호C균치%신경망락%TM요감영상%순정상원%자동분류
FCM%neutral network%TM remote sensing images%endmember%automatic classfication
针对非监督分类算法分类精度不高、监督法分类算法的训练样本需要人工选择且容易误选的问题,提出了一种基于模糊C均值聚类( FCM)和BP神经网络相结合的遥感影像自动分类算法. 首先利用FCM对影像进行初始聚类,然后根据聚类结果,由该算法自动选取其中的纯净像元作为训练样本,并送入BP网络进行学习,用最终训练得到的BP神经网络分类器对TM遥感影像进行分类,实验结果表明该算法具有较高的分类精度,能够满足大尺度地物类别判定的需要.
針對非鑑督分類算法分類精度不高、鑑督法分類算法的訓練樣本需要人工選擇且容易誤選的問題,提齣瞭一種基于模糊C均值聚類( FCM)和BP神經網絡相結閤的遙感影像自動分類算法. 首先利用FCM對影像進行初始聚類,然後根據聚類結果,由該算法自動選取其中的純淨像元作為訓練樣本,併送入BP網絡進行學習,用最終訓練得到的BP神經網絡分類器對TM遙感影像進行分類,實驗結果錶明該算法具有較高的分類精度,能夠滿足大呎度地物類彆判定的需要.
침대비감독분류산법분류정도불고、감독법분류산법적훈련양본수요인공선택차용역오선적문제,제출료일충기우모호C균치취류( FCM)화BP신경망락상결합적요감영상자동분류산법. 수선이용FCM대영상진행초시취류,연후근거취류결과,유해산법자동선취기중적순정상원작위훈련양본,병송입BP망락진행학습,용최종훈련득도적BP신경망락분류기대TM요감영상진행분류,실험결과표명해산법구유교고적분류정도,능구만족대척도지물유별판정적수요.
As for the problems that low classification accuracy of non-supervise classification algorithm and training sample of super-vise classification algorithm needs manual selection which is easy to be made wrongly, there is an automatic classfication algorithm of remote sensing image which is based on the combination of FCM and BP neural network. First, this paper uses FCM to make initial clusters of images. Then in accordance with the results of clusters, this paper picks out the endmembers which are automatically select-ed by the algorithm as the traaning samples, sends the samples to study in BP network and uses the BP neural network classifier which is got from the final training to classify the TM remote sensing images. The result shows that the algorithm owns high accuracy which could meet the requirements of determination of object types in a large scale.