运筹与管理
運籌與管理
운주여관리
Operations Research and Management Science
2015年
4期
137-140
,共4页
运筹学%pebbling数%Graham猜想%pebbling移动%多扇图
運籌學%pebbling數%Graham猜想%pebbling移動%多扇圖
운주학%pebbling수%Graham시상%pebbling이동%다선도
operational research%pebbling number%Graham’ s conjecture%pebbling move%multi-fan graphs
图G的pebbling数f( G)是最小的整数n,使得不论n个pebble如何放置在G的顶点上,总可以通过一系列的pebbling移动把1个pebble移到任意一个顶点上,其中一个pebbling移动是从一个顶点处移走两个pebble而把其中的一个移到与其相邻的一个顶点上。 Graham猜想对于任意的连通图G和H有f( G ×H)≤f( G) f( H)。多扇图Fn1,n2,?,nm是指阶为n1+n2+?+nm +1的联图P1∨( Pn1∪Pn2∪?∪Pnm )。本文首先给出了多扇图的pebbling数,然后证明了多扇图Fn1,n2,?,nm具有2-pebbling性质,最后论述了对于一个多扇图和一个具有2-pebb-ling性质的图的乘积来说,Graham猜想是成立的。作为一个推论,当G和H都是多扇图时,Graham猜想成立。
圖G的pebbling數f( G)是最小的整數n,使得不論n箇pebble如何放置在G的頂點上,總可以通過一繫列的pebbling移動把1箇pebble移到任意一箇頂點上,其中一箇pebbling移動是從一箇頂點處移走兩箇pebble而把其中的一箇移到與其相鄰的一箇頂點上。 Graham猜想對于任意的連通圖G和H有f( G ×H)≤f( G) f( H)。多扇圖Fn1,n2,?,nm是指階為n1+n2+?+nm +1的聯圖P1∨( Pn1∪Pn2∪?∪Pnm )。本文首先給齣瞭多扇圖的pebbling數,然後證明瞭多扇圖Fn1,n2,?,nm具有2-pebbling性質,最後論述瞭對于一箇多扇圖和一箇具有2-pebb-ling性質的圖的乘積來說,Graham猜想是成立的。作為一箇推論,噹G和H都是多扇圖時,Graham猜想成立。
도G적pebbling수f( G)시최소적정수n,사득불론n개pebble여하방치재G적정점상,총가이통과일계렬적pebbling이동파1개pebble이도임의일개정점상,기중일개pebbling이동시종일개정점처이주량개pebble이파기중적일개이도여기상린적일개정점상。 Graham시상대우임의적련통도G화H유f( G ×H)≤f( G) f( H)。다선도Fn1,n2,?,nm시지계위n1+n2+?+nm +1적련도P1∨( Pn1∪Pn2∪?∪Pnm )。본문수선급출료다선도적pebbling수,연후증명료다선도Fn1,n2,?,nm구유2-pebbling성질,최후논술료대우일개다선도화일개구유2-pebb-ling성질적도적승적래설,Graham시상시성립적。작위일개추론,당G화H도시다선도시,Graham시상성립。
The pebbling number of a graph G,f( G) , is the least n, no matter how n pebbles are placed on the vertices of G, a pebble can be moved to any vertex by a sequence of pebbling moves.A pebbling move consists of the removal of two pebbles vertex and the placement of one of those two pebbles on an adjacent vertex.Gra-ham conjectured that for any connected graphs G and H,f(G ×H)≤f(G)f(H) .Multi-fan graph Fn1,n2,?,nm is a joint-graph P1∨(Pn1∪Pn2∪?∪Pnm) with n1 +n2 +?+nm +1 vertices.This paper shows that f(Fn1,n2,?,nm)=n1 +n2 +?+nm +2 and Fn1,n2,?,nm with the 2-pebbling property.Graham’ s conjecture holds of a multi-fan graphs by a graph with the 2-pebbling property.As a corollary, Graham’ s conjecture holds when G and H are multi-fan graphs.