润滑与密封
潤滑與密封
윤활여밀봉
Lubrication Engineering
2015年
8期
40-46
,共7页
刘超%赵鑫%安博洋%温泽峰%金学松
劉超%趙鑫%安博洋%溫澤峰%金學鬆
류초%조흠%안박양%온택봉%금학송
钢轨波磨%滚动接触%显式有限元%瞬态接触%牵引系数
鋼軌波磨%滾動接觸%顯式有限元%瞬態接觸%牽引繫數
강궤파마%곤동접촉%현식유한원%순태접촉%견인계수
rail corrugation%rolling contact%explicit finite element%transient contact%traction coefficient
通过对某高速线路上出现的钢轨波磨的现场测量,采用显式有限元法建立三维高速瞬态滚动接触模型,分析轮轨在波磨处的高速(300 km/h)滚动行为。利用实体单元划分具有真实几何的轮对与钢轨,轮轨间的法、切向瞬态滚动接触问题由面面接触算法于时域内求解,同时考虑车辆和轨道系统的主要部件。车轮在光滑钢轨上的滚动结果显示,该模型可以建立起轮轨间稳态滚动接触,为研究表面不平顺处的滚动接触奠定了基础。分析某高速线路的钢轨波磨的波长和波深对轮轨瞬态滚动接触的影响,讨论不同牵引系数条件下波磨处的瞬态滚动接触行为。结果表明:波磨引起的轮轨法、切向接触力均在波长为80 mm (现场观测到的主波长)时达到最大,即数值重现了上述高速线路的波磨主波长;接触力随波深的增大单调递增,但增长率逐渐减少;牵引系数越大,钢轨发生不均匀磨损或塑性变形的可能性越大,即波磨产生的可能性越大。
通過對某高速線路上齣現的鋼軌波磨的現場測量,採用顯式有限元法建立三維高速瞬態滾動接觸模型,分析輪軌在波磨處的高速(300 km/h)滾動行為。利用實體單元劃分具有真實幾何的輪對與鋼軌,輪軌間的法、切嚮瞬態滾動接觸問題由麵麵接觸算法于時域內求解,同時攷慮車輛和軌道繫統的主要部件。車輪在光滑鋼軌上的滾動結果顯示,該模型可以建立起輪軌間穩態滾動接觸,為研究錶麵不平順處的滾動接觸奠定瞭基礎。分析某高速線路的鋼軌波磨的波長和波深對輪軌瞬態滾動接觸的影響,討論不同牽引繫數條件下波磨處的瞬態滾動接觸行為。結果錶明:波磨引起的輪軌法、切嚮接觸力均在波長為80 mm (現場觀測到的主波長)時達到最大,即數值重現瞭上述高速線路的波磨主波長;接觸力隨波深的增大單調遞增,但增長率逐漸減少;牽引繫數越大,鋼軌髮生不均勻磨損或塑性變形的可能性越大,即波磨產生的可能性越大。
통과대모고속선로상출현적강궤파마적현장측량,채용현식유한원법건립삼유고속순태곤동접촉모형,분석륜궤재파마처적고속(300 km/h)곤동행위。이용실체단원화분구유진실궤하적륜대여강궤,륜궤간적법、절향순태곤동접촉문제유면면접촉산법우시역내구해,동시고필차량화궤도계통적주요부건。차륜재광활강궤상적곤동결과현시,해모형가이건립기륜궤간은태곤동접촉,위연구표면불평순처적곤동접촉전정료기출。분석모고속선로적강궤파마적파장화파심대륜궤순태곤동접촉적영향,토론불동견인계수조건하파마처적순태곤동접촉행위。결과표명:파마인기적륜궤법、절향접촉력균재파장위80 mm (현장관측도적주파장)시체도최대,즉수치중현료상술고속선로적파마주파장;접촉력수파심적증대단조체증,단증장솔축점감소;견인계수월대,강궤발생불균균마손혹소성변형적가능성월대,즉파마산생적가능성월대。
Through the field measurements of rail corrugation occurred on a high?speed line, a three?dimensional high?speed transient wheel?rail rolling contact model was established by using the explicit finite element method( FEM) to in?vestigate the high?speed ( 300 km/h ) wheel?rail rolling behavior on corrugated rails. Solid elements were employed to mesh the wheelset and rail to take into account their actual geometries, the normal and tangential contact solutions was ob?tain by solving the transient rolling contact in the time domain in directions of tangent and normal between wheel and rail. Meanwhile, important components of the vehicle and rail systems were considered properly. The wheel?rail rolling contact results on a smooth rail show that the steady wheel?rail rolling contact on rails can be obtained by the model, which builds a basis for studies into transient rolling contact on irregularities like corrugation. The influence of the corrugation geome?tries, namely the wavelength and wave?depth was analyzed, the transient rolling contact behavior on the corrugation at dif?ferent traction coefficients was discussed. The result shows that both the normal and tangential contact forces caucused by corrugation reach their maximums at a wavelength of 80 mm ( a main corrugation wavelength observed in field) , which nu?merically reproduces the main corrugation wavelength of the above high?speed line. With the increase of the wave?depth, the contact force is monotonically increased, but the increase rate is gradually decreased. A larger traction coefficient will lead to larger amplitudes of irregular plastic deformation and wear on the rail surface, i.e., faster corrugation initiation and growth.