新型炭材料
新型炭材料
신형탄재료
New Carbon Materials
2015年
4期
327-334
,共8页
方伟%赵雷%梁峰%陈辉%龚仕顺%雷中兴%陈欢
方偉%趙雷%樑峰%陳輝%龔仕順%雷中興%陳歡
방위%조뢰%량봉%진휘%공사순%뢰중흥%진환
木质素改性酚醛树脂%催化剂%热解炭%碳纳米管
木質素改性酚醛樹脂%催化劑%熱解炭%碳納米管
목질소개성분철수지%최화제%열해탄%탄납미관
Lignin modified phenol-formaldehyde resin%Catalyst%Pyrolytic carbon%Carbon nanotubes
以木质素磺酸钙为原料,部分替代苯酚,合成具有良好水溶性的木质素改性酚醛树脂( LPF),并在其合成过程中将催化剂前驱体六水硝酸镍(NNH)加入到LPF体系中制备出硝酸镍复合木质素改性酚醛树脂(NLPF),经200°C×24 h固化后,于还原气氛下经800°C×3 h、1000°C×3 h、1200°C×3 h炭化处理,制得NLPF热解炭。探讨催化剂Ni在NLPF复合体系中的分散性,采用X射线衍射仪、激光拉曼光谱仪、场发射扫描电子显微镜、高分辨透射电子显微镜分析NLPF热解炭的晶体结构及显微结构。结果表明,催化剂Ni均匀分散在NLPF复合体系中;NLPF热解过程中NNH被还原成单质Ni,其催化作用使热解炭中生成了结晶程度高的直线型碳纳米管,且呈网状相互交织,均匀的排布在热解炭气孔中;随着NNH添加量的增加,NLPF热解炭的石墨化程度提高,碳纳米管的生成量和直径增加;升高炭化温度同样可以增加碳纳米管的生成量,并使其长度增长。
以木質素磺痠鈣為原料,部分替代苯酚,閤成具有良好水溶性的木質素改性酚醛樹脂( LPF),併在其閤成過程中將催化劑前驅體六水硝痠鎳(NNH)加入到LPF體繫中製備齣硝痠鎳複閤木質素改性酚醛樹脂(NLPF),經200°C×24 h固化後,于還原氣氛下經800°C×3 h、1000°C×3 h、1200°C×3 h炭化處理,製得NLPF熱解炭。探討催化劑Ni在NLPF複閤體繫中的分散性,採用X射線衍射儀、激光拉曼光譜儀、場髮射掃描電子顯微鏡、高分辨透射電子顯微鏡分析NLPF熱解炭的晶體結構及顯微結構。結果錶明,催化劑Ni均勻分散在NLPF複閤體繫中;NLPF熱解過程中NNH被還原成單質Ni,其催化作用使熱解炭中生成瞭結晶程度高的直線型碳納米管,且呈網狀相互交織,均勻的排佈在熱解炭氣孔中;隨著NNH添加量的增加,NLPF熱解炭的石墨化程度提高,碳納米管的生成量和直徑增加;升高炭化溫度同樣可以增加碳納米管的生成量,併使其長度增長。
이목질소광산개위원료,부분체대분분,합성구유량호수용성적목질소개성분철수지( LPF),병재기합성과정중장최화제전구체륙수초산얼(NNH)가입도LPF체계중제비출초산얼복합목질소개성분철수지(NLPF),경200°C×24 h고화후,우환원기분하경800°C×3 h、1000°C×3 h、1200°C×3 h탄화처리,제득NLPF열해탄。탐토최화제Ni재NLPF복합체계중적분산성,채용X사선연사의、격광랍만광보의、장발사소묘전자현미경、고분변투사전자현미경분석NLPF열해탄적정체결구급현미결구。결과표명,최화제Ni균균분산재NLPF복합체계중;NLPF열해과정중NNH피환원성단질Ni,기최화작용사열해탄중생성료결정정도고적직선형탄납미관,차정망상상호교직,균균적배포재열해탄기공중;수착NNH첨가량적증가,NLPF열해탄적석묵화정도제고,탄납미관적생성량화직경증가;승고탄화온도동양가이증가탄납미관적생성량,병사기장도증장。
Calcium lignosulfonate-phenol-formaldehyde resin ( LPF) was prepared by the polymerization of a mixture of calcium lignosulfonate and phenol with formaldehyde using a NaOH catalyst. Nickel nitrate was used as a catalyst for the carbon formation and was added to the LPF before dehydration and curing. The LPF was carbonized at 800, 1 000 and 1 200 ℃ for 3 h. The disper-sion of the catalyst ( Ni) in the cured LPF and the microstructure of the carbon were investigated by SEM, HR-TEM, XRD and Ra-man spectroscopy. Results show that Ni is dispersed homogeneously in the LPF. The carbon is a kind of foam with closed cells. The metallic Ni in the carbon catalyzes the formation of carbon nanotubes that extend from the carbon matrix into the closed cells. The number and length of the carbon nanotubes increase and their crystallinity is improved with increasing carbonization temperature and/or the amount of nickel nitrate added.