西安邮电大学学报
西安郵電大學學報
서안유전대학학보
Journal of Xi'an University of Posts and Telecommunications
2015年
5期
62-66
,共5页
半监督支持向量机%梯度直推式支持向量机%光滑分段函数%逼近性能%填充函数
半鑑督支持嚮量機%梯度直推式支持嚮量機%光滑分段函數%逼近性能%填充函數
반감독지지향량궤%제도직추식지지향량궤%광활분단함수%핍근성능%전충함수
semi-supervised support vector machine%gradient transductive support vector ma-chine%smooth piecewise function%approximation performance%filled function
构造一个光滑分段函数,以逼近梯度直推式支持向量机模型中的不可微项,得到一种新的光滑分段半监督支持向量机模型。根据新模型的非凸特性,采用无参数填充函数法对其求解,以此避免参数调节的复杂过程,减小计算量。采用 UCI数据库中不同规模的数据集,对新模型进行训练和测试,结果表明新模型可降低向量机的平均误分率,提高其分类性能。
構造一箇光滑分段函數,以逼近梯度直推式支持嚮量機模型中的不可微項,得到一種新的光滑分段半鑑督支持嚮量機模型。根據新模型的非凸特性,採用無參數填充函數法對其求解,以此避免參數調節的複雜過程,減小計算量。採用 UCI數據庫中不同規模的數據集,對新模型進行訓練和測試,結果錶明新模型可降低嚮量機的平均誤分率,提高其分類性能。
구조일개광활분단함수,이핍근제도직추식지지향량궤모형중적불가미항,득도일충신적광활분단반감독지지향량궤모형。근거신모형적비철특성,채용무삼수전충함수법대기구해,이차피면삼수조절적복잡과정,감소계산량。채용 UCI수거고중불동규모적수거집,대신모형진행훈련화측시,결과표명신모형가강저향량궤적평균오분솔,제고기분류성능。
A smooth piecewise function is constructed to approximate the non-differentiable part of the gradient transductive support vector machine,and then,a new smooth semi-supervised support vector machine model is proposed.According to the non-convex character of the new model,a new parameter free filled function method can be used to solve the smooth non-convex programming,and thus the difficulties of parameter adj ustment can be overcome,which makes the model simple and easy to implement.Several data sets of different size from the UCI database are used to train and test the new model.The results show that the error classification rate becomes more lower,and that the classification performance are improved.