核技术
覈技術
핵기술
Nuclear Techniques
2015年
9期
090604-1-090604-6
,共1页
贺丹%宋英明%邹树梁%徐守龙%王晓冬%朱志超%谭桢干%何志锋%王新林
賀丹%宋英明%鄒樹樑%徐守龍%王曉鼕%硃誌超%譚楨榦%何誌鋒%王新林
하단%송영명%추수량%서수룡%왕효동%주지초%담정간%하지봉%왕신림
252Cf 中子源%屏蔽性能测试实验装置%MCNP%慢化材料
252Cf 中子源%屏蔽性能測試實驗裝置%MCNP%慢化材料
252Cf 중자원%병폐성능측시실험장치%MCNP%만화재료
252Cf neutron source%Shielding performance testing device%MCNP%Moderator material
基于252Cf 中子源,构建了反应堆结构屏蔽材料屏蔽性能测试装置设计模型。采用 MCNP 程序建立了测试模型,并逐次模拟计算屏蔽性能测试装置慢化层、中子防护层、γ光子防护层厚度。对于关键的慢化层,采用 Geant4程序进一步验证 MCNP 程序的计算结果。通过分析模拟计算获得了最优屏蔽材料及厚度分别为:慢化层材料为石蜡,厚度为8 cm;中子防护层材料为聚乙烯,厚度为38 cm;γ防护层材料为铁,厚度为11 cm。模拟实验结果表明,所设计屏蔽性能测试装置能够满足中子慢化以及中子、光子防护的需要。
基于252Cf 中子源,構建瞭反應堆結構屏蔽材料屏蔽性能測試裝置設計模型。採用 MCNP 程序建立瞭測試模型,併逐次模擬計算屏蔽性能測試裝置慢化層、中子防護層、γ光子防護層厚度。對于關鍵的慢化層,採用 Geant4程序進一步驗證 MCNP 程序的計算結果。通過分析模擬計算穫得瞭最優屏蔽材料及厚度分彆為:慢化層材料為石蠟,厚度為8 cm;中子防護層材料為聚乙烯,厚度為38 cm;γ防護層材料為鐵,厚度為11 cm。模擬實驗結果錶明,所設計屏蔽性能測試裝置能夠滿足中子慢化以及中子、光子防護的需要。
기우252Cf 중자원,구건료반응퇴결구병폐재료병폐성능측시장치설계모형。채용 MCNP 정서건립료측시모형,병축차모의계산병폐성능측시장치만화층、중자방호층、γ광자방호층후도。대우관건적만화층,채용 Geant4정서진일보험증 MCNP 정서적계산결과。통과분석모의계산획득료최우병폐재료급후도분별위:만화층재료위석사,후도위8 cm;중자방호층재료위취을희,후도위38 cm;γ방호층재료위철,후도위11 cm。모의실험결과표명,소설계병폐성능측시장치능구만족중자만화이급중자、광자방호적수요。
Background: New material for the reactor shielding structure is one type of cast-steel impurity doping actinide elements have been adopted. The design parameters of the shielding performance testing device for the various parts of reactor can be obtained by Monte Carlo method. Purpose: This study aims to test the shielding performance of the shielding material of reactor. Methods: First of all, the testing device model was built based on a 252Cf neutron source. Three kinds of models (the thicknesses of the moderation layer, the protective layers of the neutron and gamma ray) are calculated respectively using the MCNP program for the shielding performance testing device. The GEANT4 program was used for the key moderation layer to verify the results obtained by the MCNP program. Results: Through the analysis of simulation results, we obtained optimal shielding materials and the thicknesses of material layer: moderator layer material is paraffin wax, which having a thickness of 8 cm, neutron shielding material is polyethylene, which having a thickness of 38 cm, and γ protective layer material is iron, which having a thickness of 11 cm. Conclusion: Simulation results show that the proposed shielding performance testing device can meet the requirements of neutron moderator, neutron protection and photon protection.