新型炭材料
新型炭材料
신형탄재료
New Carbon Materials
2015年
4期
295-301
,共7页
马昌%史景利%李亚娟%宋燕%刘朗
馬昌%史景利%李亞娟%宋燕%劉朗
마창%사경리%리아연%송연%류랑
富氮%电容器%纳米炭纤维%多孔炭
富氮%電容器%納米炭纖維%多孔炭
부담%전용기%납미탄섬유%다공탄
Nitrogen-enriched%Supercapacitor%Carbon nanofibers%Porous carbon
以商业聚酰亚胺树脂为前驱体,经过静电纺丝和一步炭化制备出富含氮原子的纳米炭纤维,采用扫描电镜、低温氮吸附和XPS等手段对纳米炭纤维的结构进行表征,考察不同炭化温度下纳米炭纤维的孔结构与表面含氮官能团的演变。结果显示,所得聚酰亚胺纤维经过一步高温处理便可得到微孔发达且富含氮原子的纳米炭纤维。随着炭化温度的升高,纳米炭纤维的比表面积与氮含量均逐渐降低。700℃炭化得到的纳米炭纤维的比表面积达到447 m2/g、纤维平均直径为234 nm、表面氮含量达到4.1%。将所得纳米炭纤维直接用作超级电容器电极,采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行考察。所得富氮纳米炭纤维表现出优异的电容量和表面电化学活性,其比电容达到214 F/g,单位比表面的电容量达到0.57 F/m2。
以商業聚酰亞胺樹脂為前驅體,經過靜電紡絲和一步炭化製備齣富含氮原子的納米炭纖維,採用掃描電鏡、低溫氮吸附和XPS等手段對納米炭纖維的結構進行錶徵,攷察不同炭化溫度下納米炭纖維的孔結構與錶麵含氮官能糰的縯變。結果顯示,所得聚酰亞胺纖維經過一步高溫處理便可得到微孔髮達且富含氮原子的納米炭纖維。隨著炭化溫度的升高,納米炭纖維的比錶麵積與氮含量均逐漸降低。700℃炭化得到的納米炭纖維的比錶麵積達到447 m2/g、纖維平均直徑為234 nm、錶麵氮含量達到4.1%。將所得納米炭纖維直接用作超級電容器電極,採用循環伏安法、恆流充放電和交流阻抗對其電化學性能進行攷察。所得富氮納米炭纖維錶現齣優異的電容量和錶麵電化學活性,其比電容達到214 F/g,單位比錶麵的電容量達到0.57 F/m2。
이상업취선아알수지위전구체,경과정전방사화일보탄화제비출부함담원자적납미탄섬유,채용소묘전경、저온담흡부화XPS등수단대납미탄섬유적결구진행표정,고찰불동탄화온도하납미탄섬유적공결구여표면함담관능단적연변。결과현시,소득취선아알섬유경과일보고온처리편가득도미공발체차부함담원자적납미탄섬유。수착탄화온도적승고,납미탄섬유적비표면적여담함량균축점강저。700℃탄화득도적납미탄섬유적비표면적체도447 m2/g、섬유평균직경위234 nm、표면담함량체도4.1%。장소득납미탄섬유직접용작초급전용기전겁,채용순배복안법、항류충방전화교류조항대기전화학성능진행고찰。소득부담납미탄섬유표현출우이적전용량화표면전화학활성,기비전용체도214 F/g,단위비표면적전용량체도0.57 F/m2。
Nitrogen-enriched porous carbon nanofibers were prepared from a commercial polyimide resin by electrospinning, fol-lowed by carbonization. The products were characterized by scanning electron microscopy, nitrogen sorption and X-ray photoelec-tron spectroscopy. As-prepared carbon nanofibers were directly used as a supercapacitor electrode, and their electrochemical per-formance was investigated by cyclic voltammetry, charge-discharge tests and electrochemical impedance spectroscopy. The evolution of the porous structure and the surface nitrogen-containing functionality of the carbon nanofibers with carbonization temperature was also investigated. Results showed the carbon nanofibers with developed micropores and enriched with nitrogen were obtained by car-bonization of polyimide nanofibers. Both the specific surface area and surface nitrogen content decreased gradually with the carboni-zation temperature. The carbon nanofibers obtained at 700 ℃ had the highest specific surface area of 447 m2/g, a fiber diameter of 234 nm and a nitrogen content of 4. 1%. They also exhibited a specific capacity of 214 F/g or 0. 57 F/m2 .