中国空间科学技术
中國空間科學技術
중국공간과학기술
Chinese Space Science and Technology
2015年
4期
30-36
,共7页
马健%张宏宇%闫亮%冉治国
馬健%張宏宇%閆亮%冉治國
마건%장굉우%염량%염치국
桁架结构%跨尺度%优化设计%热稳定性%代表性体积单元%热膨胀系数%卫星
桁架結構%跨呎度%優化設計%熱穩定性%代錶性體積單元%熱膨脹繫數%衛星
항가결구%과척도%우화설계%열은정성%대표성체적단원%열팽창계수%위성
Truss%Multi-scale%Optimizing design%Thermal stability%Representative volume element%Coefficient of thermal expansion%Satellite
卫星飞行过程中,高精度测量设备的复合材料支撑结构经历多种温度环境,影响结构的热稳定性。为对其热学性能进行研究,综合考虑热—力耦合优化设计,首先,发展了复合材料热膨胀系数跨尺度数值模型。在微观模型中,通过建立代表性体积单元(Representative Volume Element , RVE)模型,由纤维热膨胀系数计算得到单向复合材料热膨胀系数;建立复合材料构件宏观模型,采用微观模型计算得到的热膨胀系数对宏观模型进行分析与计算。为验证复合材料热膨胀系数跨尺度数值模型的正确性,对复合材料管件的热膨胀性能进行了试验测试,测试结果与数值计算结果具有很好的一致性。其次,对卫星桁架杆件进行热稳定性优化设计与分析,综合考虑管件的热膨胀系数与刚度的约束条件,采用具有二阶收敛特性的共轭梯度法对复合材料构件的铺层进行优化设计,发展了复合材料桁架结构热—力耦合优化设计流程。最后,针对某卫星天线桁架支撑结构进行了定热膨胀系数设计与分析,结果表明采用跨尺度热—力耦合优化设计方法得到的热变形量远小于天线支撑结构给定的指标。该方法可用于卫星复合材料桁架结构热稳定性设计与分析。
衛星飛行過程中,高精度測量設備的複閤材料支撐結構經歷多種溫度環境,影響結構的熱穩定性。為對其熱學性能進行研究,綜閤攷慮熱—力耦閤優化設計,首先,髮展瞭複閤材料熱膨脹繫數跨呎度數值模型。在微觀模型中,通過建立代錶性體積單元(Representative Volume Element , RVE)模型,由纖維熱膨脹繫數計算得到單嚮複閤材料熱膨脹繫數;建立複閤材料構件宏觀模型,採用微觀模型計算得到的熱膨脹繫數對宏觀模型進行分析與計算。為驗證複閤材料熱膨脹繫數跨呎度數值模型的正確性,對複閤材料管件的熱膨脹性能進行瞭試驗測試,測試結果與數值計算結果具有很好的一緻性。其次,對衛星桁架桿件進行熱穩定性優化設計與分析,綜閤攷慮管件的熱膨脹繫數與剛度的約束條件,採用具有二階收斂特性的共軛梯度法對複閤材料構件的鋪層進行優化設計,髮展瞭複閤材料桁架結構熱—力耦閤優化設計流程。最後,針對某衛星天線桁架支撐結構進行瞭定熱膨脹繫數設計與分析,結果錶明採用跨呎度熱—力耦閤優化設計方法得到的熱變形量遠小于天線支撐結構給定的指標。該方法可用于衛星複閤材料桁架結構熱穩定性設計與分析。
위성비행과정중,고정도측량설비적복합재료지탱결구경력다충온도배경,영향결구적열은정성。위대기열학성능진행연구,종합고필열—력우합우화설계,수선,발전료복합재료열팽창계수과척도수치모형。재미관모형중,통과건립대표성체적단원(Representative Volume Element , RVE)모형,유섬유열팽창계수계산득도단향복합재료열팽창계수;건립복합재료구건굉관모형,채용미관모형계산득도적열팽창계수대굉관모형진행분석여계산。위험증복합재료열팽창계수과척도수치모형적정학성,대복합재료관건적열팽창성능진행료시험측시,측시결과여수치계산결과구유흔호적일치성。기차,대위성항가간건진행열은정성우화설계여분석,종합고필관건적열팽창계수여강도적약속조건,채용구유이계수렴특성적공액제도법대복합재료구건적포층진행우화설계,발전료복합재료항가결구열—력우합우화설계류정。최후,침대모위성천선항가지탱결구진행료정열팽창계수설계여분석,결과표명채용과척도열—력우합우화설계방법득도적열변형량원소우천선지탱결구급정적지표。해방법가용우위성복합재료항가결구열은정성설계여분석。
When spacecraft works ,it will suffer different temperature environments ,while temperature difference will always introduce changes of shape and size of composite structures . However ,some spacecraft parts need high dimensional stability to keep its right function . Till now , the mechanical properties of the composite have been widely studied , however , the thermal properties of composite and optimization of composite considering both thermal and mechanical properties are far from well studied . Composite tubes were optimized to a given coefficient of thermal expansion (CTE) , and the stiffness of those tubes was taken into consideration at the same time . Firstly , multi‐scale numerical models were developed to calculate the CTE . In micro‐scale mode , the CTE of unidirectional fiber reinforced composite was calculated by the fiber CTE through representative volume elements (RVE ) . In macro‐scale , a composite tube model was generated to predict both axial and transverse CTE of the tube based on the CTE computed by RVE . Composite laminates and tubes with given plies were analyzed and tested .Comparison between the predicted results and the experimental one verified the model , w hich made the foundation for the optimization mode . Secondly , optimization models for composite truss structure were created .The conjugate gradient method was adopted to optimize the plies of composite parts , and the thermal‐mechanical optimizing method was developed . Finally , the satellite support truss structure was analyzed by the thermal‐mechanical optimizing method . Analyzed results show that this optimized support structure and the whole antenna have an excellent thermal dimensional stability . The thermal‐mechanical optimizing method can be used for thermal stability design and analysis of composite support truss structures .