火力与指挥控制
火力與指揮控製
화력여지휘공제
Fire Control & Command Control
2015年
8期
38-41
,共4页
粒子群%多机协同%目标分配%贪婪
粒子群%多機協同%目標分配%貪婪
입자군%다궤협동%목표분배%탐람
particle swarm optimization%multi-fighters cooperative%target assignment%greedy
针对多机协同空战目标分配的问题,提出了一种改进的粒子群算法,设计了新的粒子群位置和速度更新过程.充分利用粒子群算法的全局搜索能力以及利用贪婪策略的局部最优搜索能力进行混合搜索,显著地提高了搜索能力.仿真结果表明,改进的粒子群算法能够快速解决多机协同作战的目标分配问题,能够找到逼近全局最优点的解.
針對多機協同空戰目標分配的問題,提齣瞭一種改進的粒子群算法,設計瞭新的粒子群位置和速度更新過程.充分利用粒子群算法的全跼搜索能力以及利用貪婪策略的跼部最優搜索能力進行混閤搜索,顯著地提高瞭搜索能力.倣真結果錶明,改進的粒子群算法能夠快速解決多機協同作戰的目標分配問題,能夠找到逼近全跼最優點的解.
침대다궤협동공전목표분배적문제,제출료일충개진적입자군산법,설계료신적입자군위치화속도경신과정.충분이용입자군산법적전국수색능력이급이용탐람책략적국부최우수색능력진행혼합수색,현저지제고료수색능력.방진결과표명,개진적입자군산법능구쾌속해결다궤협동작전적목표분배문제,능구조도핍근전국최우점적해.
According to the problem of multi-fighters cooperative target assignment,an improved particle swarm optimization algorithm is put forward,and the process of updating position and velocity of new particle swarm is designed. The algorithm performance is enhanced observably by taking advantage of the global searching ability of PSO algorithm and the partial searching ability of greedy method. The result of simulation experiment shows that the improved particle swarm optimization can solve the problem of multi-fighters cooperative target assignment quickly,and can g find out the global optimal solution.