计算机研究与发展
計算機研究與髮展
계산궤연구여발전
Journal of Computer Research and Development
2015年
9期
2114-2122
,共9页
马尔可夫逻辑网络%中文零指代消解%零指代项识别%联合学习%全局规则%局部规则
馬爾可伕邏輯網絡%中文零指代消解%零指代項識彆%聯閤學習%全跼規則%跼部規則
마이가부라집망락%중문령지대소해%령지대항식별%연합학습%전국규칙%국부규칙
Markov logic networks%Chinese zero anaphora resolution%zero pronoun detection%joint learning%global rule%local rule
中文零指代消解问题包括零指代项的识别和零指代项的消解2个相互关联的子任务.传统的方法在解决该问题时,往往不考虑2个子任务间的关联关系,比如识别出的零指代项必须被消解以及发生消解的必须是零指代项等约束.基于马尔可夫逻辑网络模型可以将零指代项的识别和零指代项的消解2个子任务融合在统一的机器学习框架下进行联合推断与联合学习,采用局部规则分别针对零指代项的识别和消解进行预测,采用全局规则描述这2个子任务间的关联关系.基于OntoNotes3.0的中文数据集上的实验结果显示,基于马尔可夫逻辑网络的联合学习模型相比于独立学习模型以及多个baseline方法能够获得更好的实验效果.
中文零指代消解問題包括零指代項的識彆和零指代項的消解2箇相互關聯的子任務.傳統的方法在解決該問題時,往往不攷慮2箇子任務間的關聯關繫,比如識彆齣的零指代項必鬚被消解以及髮生消解的必鬚是零指代項等約束.基于馬爾可伕邏輯網絡模型可以將零指代項的識彆和零指代項的消解2箇子任務融閤在統一的機器學習框架下進行聯閤推斷與聯閤學習,採用跼部規則分彆針對零指代項的識彆和消解進行預測,採用全跼規則描述這2箇子任務間的關聯關繫.基于OntoNotes3.0的中文數據集上的實驗結果顯示,基于馬爾可伕邏輯網絡的聯閤學習模型相比于獨立學習模型以及多箇baseline方法能夠穫得更好的實驗效果.
중문령지대소해문제포괄령지대항적식별화령지대항적소해2개상호관련적자임무.전통적방법재해결해문제시,왕왕불고필2개자임무간적관련관계,비여식별출적령지대항필수피소해이급발생소해적필수시령지대항등약속.기우마이가부라집망락모형가이장령지대항적식별화령지대항적소해2개자임무융합재통일적궤기학습광가하진행연합추단여연합학습,채용국부규칙분별침대령지대항적식별화소해진행예측,채용전국규칙묘술저2개자임무간적관련관계.기우OntoNotes3.0적중문수거집상적실험결과현시,기우마이가부라집망락적연합학습모형상비우독립학습모형이급다개baseline방법능구획득경호적실험효과.
Chinese zero anaphora resolution includes tw o subtasks:zero pronoun detection and zero anaphora resolution ,which are correlated with each other .Zero pronoun detection means to recognize all the zero anaphors in a given text ,which mainly include null subject or null object ,and exist widely in Chinese ,Japanese and Italian .Zero anaphora resolution means to determine the antecedent for each recognized zero anaphor ,which has already appeared as a noun ,pronoun or common noun phrase before the detected zero anaphora in the previous text . Traditional methods to solve Chinese zero anaphora resolution problem generally employ some common‐used learning features to construct independent classifiers for zero pronoun detection and zero anaphora resolution ,but it cannot capture association relationship between these two subtasks ,e .g .recognized zero anaphora must be resolved or the one to be resolved must be zero anaphora and so on .In our method ,these two subtasks are combined into a unified machine learning framework with Markov logic to make joint inference and joint learning .We use local formulas to describe zero pronoun detection and zero anaphora resolution respectively ,and use global formulas to represent the association relationship between these two subtasks .We find that joint learning model which makes learning with inference can acquire more effective feature weights than independent learning model which just makes learning without inference .Experimental results on OntoNotes3 .0 Chinese dataset show that our joint learning model can achieve better results compared with independent learning model and other baseline methods .