计算机研究与发展
計算機研究與髮展
계산궤연구여발전
Journal of Computer Research and Development
2015年
9期
1954-1964
,共11页
空间搜索%语义增强%知识库%语义距离%即时搜索
空間搜索%語義增彊%知識庫%語義距離%即時搜索
공간수색%어의증강%지식고%어의거리%즉시수색
spatial keyword search%semantic enhancement%knowledge base%semantic distance%instant search
空间关键词搜索立足于查找满足用户查询意图且空间距离相近的兴趣点(point of interest , POI),在地图搜索等领域有着广泛的应用.传统的空间关键词搜索方法仅考虑关键词与POI点在文本上的匹配程度,忽略了查询的语义信息,因而会导致相关结果丢失以及无关结果引入等问题.针对传统方法的局限,提出了语义增强的空间关键词搜索方法S3(semantic‐enhanced spatial keyword search).该方法对查询关键词中包含的语义信息进行分析,并结合语义相关性和空间距离对POI点进行有效的排序.S3方法主要有以下2个技术挑战:1)如何对语义信息进行分析.为此,S3引入了知识库对POI数据进行语义扩充,并提出了一种基于图的语义距离度量方式.结合语义距离和空间距离,S3给出POI点的综合排序方案.2)如何在大规模数据上即时地返回top‐k搜索结果.针对这一挑战,提出了一种新型的语义空间混合索引结构GRT ree(graph rectangle tree),并研究了有效的剪枝策略.在大规模真实数据集上的实验表明,S3不仅能够返回更为相关的结果,而且有着很好的效率和可扩展性.
空間關鍵詞搜索立足于查找滿足用戶查詢意圖且空間距離相近的興趣點(point of interest , POI),在地圖搜索等領域有著廣汎的應用.傳統的空間關鍵詞搜索方法僅攷慮關鍵詞與POI點在文本上的匹配程度,忽略瞭查詢的語義信息,因而會導緻相關結果丟失以及無關結果引入等問題.針對傳統方法的跼限,提齣瞭語義增彊的空間關鍵詞搜索方法S3(semantic‐enhanced spatial keyword search).該方法對查詢關鍵詞中包含的語義信息進行分析,併結閤語義相關性和空間距離對POI點進行有效的排序.S3方法主要有以下2箇技術挑戰:1)如何對語義信息進行分析.為此,S3引入瞭知識庫對POI數據進行語義擴充,併提齣瞭一種基于圖的語義距離度量方式.結閤語義距離和空間距離,S3給齣POI點的綜閤排序方案.2)如何在大規模數據上即時地返迴top‐k搜索結果.針對這一挑戰,提齣瞭一種新型的語義空間混閤索引結構GRT ree(graph rectangle tree),併研究瞭有效的剪枝策略.在大規模真實數據集上的實驗錶明,S3不僅能夠返迴更為相關的結果,而且有著很好的效率和可擴展性.
공간관건사수색립족우사조만족용호사순의도차공간거리상근적흥취점(point of interest , POI),재지도수색등영역유착엄범적응용.전통적공간관건사수색방법부고필관건사여POI점재문본상적필배정도,홀략료사순적어의신식,인이회도치상관결과주실이급무관결과인입등문제.침대전통방법적국한,제출료어의증강적공간관건사수색방법S3(semantic‐enhanced spatial keyword search).해방법대사순관건사중포함적어의신식진행분석,병결합어의상관성화공간거리대POI점진행유효적배서.S3방법주요유이하2개기술도전:1)여하대어의신식진행분석.위차,S3인입료지식고대POI수거진행어의확충,병제출료일충기우도적어의거리도량방식.결합어의거리화공간거리,S3급출POI점적종합배서방안.2)여하재대규모수거상즉시지반회top‐k수색결과.침대저일도전,제출료일충신형적어의공간혼합색인결구GRT ree(graph rectangle tree),병연구료유효적전지책략.재대규모진실수거집상적실험표명,S3불부능구반회경위상관적결과,이차유착흔호적효솔화가확전성.
Spatial keyword search finds the points‐of‐interest (POIs) which are not only relevant to users’ query intent ,but also close to query location .Spatial keyword search has many important applications ,such as map search .Previous methods for spatial keyword search have the limitation that they only consider textual relevance of POIs to query keywords ,and neglect the semantics of queries .So these methods may not be able to return relevant results or return many irrelevant results . To address this problem ,this paper introduces a semantic‐enhanced spatial keyword search method , named S3 (semantic‐enhanced spatial keyw ord search) .Given a query ,S3 analyzes the semantics of the query keywords to measure semantic distances of POIs to the query .Then ,it utilizes a novel POI ranking mechanism by combining both semantic and spatial distance for effective POI search .S3 has the following challenges .Firstly ,S3 introduces knowledge bases to help capture query semantics and introduces a ranking scoring function that considers both semantic distance and spatial distance . Secondly ,it calls for instant search on large‐scale POI data sets .To address this challenge ,we devise a novel index structure GRT ree , and develop some effective pruning techniques based on this structure .The extensive experiments on a real dataset show that S3 not only produces high‐quality results ,but also has good efficiency and scalability .