计算机应用与软件
計算機應用與軟件
계산궤응용여연건
Computer Applications and Software
2015年
8期
243-247,314
,共6页
链接预测%概率模型%矩阵分解
鏈接預測%概率模型%矩陣分解
련접예측%개솔모형%구진분해
Link prediction%Probabilistic model%Matrix factorisation
链接预测是社会网络分析中一个具有挑战性的问题。社会网络中的链接预测问题就是预测社会实体间未被发现的链接和即将演化产生的链接。已有的链接预测算法大多基于社会网络本身的拓扑结构,而忽视社会实体自身的个性化特征。针对以上问题,结合社会实体的个性化特征和社会网络的拓扑特征,提出一种基于概率矩阵分解模型的个性化链接预测算法。该算法整合了社会网络的拓扑特征和实体的个性化信息,建立概率矩阵分解模型,并通过基于梯度的优化算法对模型进行求解。在两个数据集上进行多组实验,一个是数据挖掘领域的合作者网络,另一个是电子商务消费者的信任网络。实验结果证明该算法较现有方法预测准确率有了较大提高。
鏈接預測是社會網絡分析中一箇具有挑戰性的問題。社會網絡中的鏈接預測問題就是預測社會實體間未被髮現的鏈接和即將縯化產生的鏈接。已有的鏈接預測算法大多基于社會網絡本身的拓撲結構,而忽視社會實體自身的箇性化特徵。針對以上問題,結閤社會實體的箇性化特徵和社會網絡的拓撲特徵,提齣一種基于概率矩陣分解模型的箇性化鏈接預測算法。該算法整閤瞭社會網絡的拓撲特徵和實體的箇性化信息,建立概率矩陣分解模型,併通過基于梯度的優化算法對模型進行求解。在兩箇數據集上進行多組實驗,一箇是數據挖掘領域的閤作者網絡,另一箇是電子商務消費者的信任網絡。實驗結果證明該算法較現有方法預測準確率有瞭較大提高。
련접예측시사회망락분석중일개구유도전성적문제。사회망락중적련접예측문제취시예측사회실체간미피발현적련접화즉장연화산생적련접。이유적련접예측산법대다기우사회망락본신적탁복결구,이홀시사회실체자신적개성화특정。침대이상문제,결합사회실체적개성화특정화사회망락적탁복특정,제출일충기우개솔구진분해모형적개성화련접예측산법。해산법정합료사회망락적탁복특정화실체적개성화신식,건립개솔구진분해모형,병통과기우제도적우화산법대모형진행구해。재량개수거집상진행다조실험,일개시수거알굴영역적합작자망락,령일개시전자상무소비자적신임망락。실험결과증명해산법교현유방법예측준학솔유료교대제고。
Link prediction is a challenging task in social network analysis.The problem of link prediction in social network is tantamount to finding out the missing links and inferring the future links on evolution among social entities.Previous studies on link prediction algorithm focus more on the topological structure of social network itself but ignore the personalised features of social entity its own .In light of the prob-lems above, this paper presents a personalised prediction algorithm, which is based on probabilistic matrix factorisation model, in combination with the personalised features of social entities and the topological features of social network.The algorithm integrates the topological features of social network and the personalised information of entities, builds probabilistic matrix factorisation model, and seeks the solution through gradient-based optimisation algorithm.We conduct groups of experiment on 2 real datasets, a co-authorship network in data mining field and a trust network of e-commerce consumers.Experimental results prove that our algorithm has big improvement than current approaches in pre-diction accuracy.