计算机应用与软件
計算機應用與軟件
계산궤응용여연건
Computer Applications and Software
2015年
8期
166-169
,共4页
林燕姿%赵翠莲%范志坚%罗林辉
林燕姿%趙翠蓮%範誌堅%囉林輝
림연자%조취련%범지견%라림휘
Leap Motion%红外跟踪%抓握和捏握%抓握状态模型
Leap Motion%紅外跟蹤%抓握和捏握%抓握狀態模型
Leap Motion%홍외근종%조악화날악%조악상태모형
Leap Motion%Infrared tracking%Grasp and grip%Grasp state model
为了实现手部功能障碍患者在抓握康复训练中手部状态的数字化,提出采用抓握状态模型对手部状态进行识别,并通过实验分析模型的适用性与鲁棒性。首先,提出一种手部抓握状态模型,抓握对象,手部抓握类型以及手部抓握状态判定的流程。然后,采用Leap Motion对5名受试者抓握ARAT( Action Research Arm Test)标准物时的动作进行跟踪,分析抓握状态模型的适用性。最后,通过实验中抓握状态模型参数的离散度分析抓握对象尺寸、手部差异和抓握角度对抓握状态模型稳定性的影响。实验结果表明:实验中抓握状态模型参数的平均相对标准偏差为0.637,且该抓握状态模型具有良好的适用性和鲁棒性。采用基于机器视觉的抓握状态模型对手部状态识别基本满足对手部运动跟踪精度高、处理速度快等要求。
為瞭實現手部功能障礙患者在抓握康複訓練中手部狀態的數字化,提齣採用抓握狀態模型對手部狀態進行識彆,併通過實驗分析模型的適用性與魯棒性。首先,提齣一種手部抓握狀態模型,抓握對象,手部抓握類型以及手部抓握狀態判定的流程。然後,採用Leap Motion對5名受試者抓握ARAT( Action Research Arm Test)標準物時的動作進行跟蹤,分析抓握狀態模型的適用性。最後,通過實驗中抓握狀態模型參數的離散度分析抓握對象呎吋、手部差異和抓握角度對抓握狀態模型穩定性的影響。實驗結果錶明:實驗中抓握狀態模型參數的平均相對標準偏差為0.637,且該抓握狀態模型具有良好的適用性和魯棒性。採用基于機器視覺的抓握狀態模型對手部狀態識彆基本滿足對手部運動跟蹤精度高、處理速度快等要求。
위료실현수부공능장애환자재조악강복훈련중수부상태적수자화,제출채용조악상태모형대수부상태진행식별,병통과실험분석모형적괄용성여로봉성。수선,제출일충수부조악상태모형,조악대상,수부조악류형이급수부조악상태판정적류정。연후,채용Leap Motion대5명수시자조악ARAT( Action Research Arm Test)표준물시적동작진행근종,분석조악상태모형적괄용성。최후,통과실험중조악상태모형삼수적리산도분석조악대상척촌、수부차이화조악각도대조악상태모형은정성적영향。실험결과표명:실험중조악상태모형삼수적평균상대표준편차위0.637,차해조악상태모형구유량호적괄용성화로봉성。채용기우궤기시각적조악상태모형대수부상태식별기본만족대수부운동근종정도고、처리속도쾌등요구。
For digitising the hand movement of patients with hand function dysfunctions during rehabilitation, we presented that to recognise the hand state with a grasp state model, and analysed the applicability and robustness of the model by experiments.First, we presented the hand grasp state model, including the grasping objects, the types of hand grasp and the determination process of hand grasping state.Subsequently, we tracked using Leap Motion the hand movements of five testees when they grasping the ARAT objects, and analysed the applicability of the grasp state model.Finally, we analysed the effect of grasping objects size, hand differences and grasping angels on the stability of the model with the parameters of dispersion of the model in experiment.Experimental results showed that the average relative standard deviation of model parameters in experiment was 0.637, and the grasp state model has good applicability and robustness.Using computer vision-based grasp state model to reorganise the hand state basically meets the requirements of high track accuracy and rapid processing speed.