机械工程学报
機械工程學報
궤계공정학보
Journal of Mechanical Engineering
2015年
16期
77-86
,共10页
反面选择算法%界面检测器%异常度%异常检测%轴承
反麵選擇算法%界麵檢測器%異常度%異常檢測%軸承
반면선택산법%계면검측기%이상도%이상검측%축승
negative selection algorithm%interface detector%abnormal degree%anomaly detection%bearing
针对在无故障样本情况下如何快速检测设备异常度问题,在约简自己空间边界样本数量的基础上,提出一种约简边界样本界面检测器。以Iris数据集为例进行分析,发现与已有的异常检测方法相比,约简边界样本界面检测器是一种具有高检测率高误报警率的异常检测方法,而且具有很强的数据压缩功能,尤其是在区分有较清晰类边界数据时,具有更好的检测性能。利用约简边界样本界面检测器异常检测方法分析轴承状态数据,不仅能反映出轴承的各种状态,而且能通过设备的异常程度反映出同类故障的轻重程度。约简边界样本界面检测器的设备异常度检测方法,是在学习设备正常运行数据的基础上,找到自己空间的边界样本,并根据一定规则将其约简后,结合其方位信息与训练样本半径,进行设备状态检测,不需要设备运行的故障数据,它适合对故障数据缺乏的设备进行有效的异常检测。
針對在無故障樣本情況下如何快速檢測設備異常度問題,在約簡自己空間邊界樣本數量的基礎上,提齣一種約簡邊界樣本界麵檢測器。以Iris數據集為例進行分析,髮現與已有的異常檢測方法相比,約簡邊界樣本界麵檢測器是一種具有高檢測率高誤報警率的異常檢測方法,而且具有很彊的數據壓縮功能,尤其是在區分有較清晰類邊界數據時,具有更好的檢測性能。利用約簡邊界樣本界麵檢測器異常檢測方法分析軸承狀態數據,不僅能反映齣軸承的各種狀態,而且能通過設備的異常程度反映齣同類故障的輕重程度。約簡邊界樣本界麵檢測器的設備異常度檢測方法,是在學習設備正常運行數據的基礎上,找到自己空間的邊界樣本,併根據一定規則將其約簡後,結閤其方位信息與訓練樣本半徑,進行設備狀態檢測,不需要設備運行的故障數據,它適閤對故障數據缺乏的設備進行有效的異常檢測。
침대재무고장양본정황하여하쾌속검측설비이상도문제,재약간자기공간변계양본수량적기출상,제출일충약간변계양본계면검측기。이Iris수거집위례진행분석,발현여이유적이상검측방법상비,약간변계양본계면검측기시일충구유고검측솔고오보경솔적이상검측방법,이차구유흔강적수거압축공능,우기시재구분유교청석류변계수거시,구유경호적검측성능。이용약간변계양본계면검측기이상검측방법분석축승상태수거,불부능반영출축승적각충상태,이차능통과설비적이상정도반영출동류고장적경중정도。약간변계양본계면검측기적설비이상도검측방법,시재학습설비정상운행수거적기출상,조도자기공간적변계양본,병근거일정규칙장기약간후,결합기방위신식여훈련양본반경,진행설비상태검측,불수요설비운행적고장수거,타괄합대고장수거결핍적설비진행유효적이상검측。
The interface detector with reduction boundary samples(RI-detector) is presented based on introduce the term boundary samples of self-space, which can detect the abnormal degree of equipment rapidly without fault sample. Take the Iris data set as examples for analysis, and then find that RI-detector is an abnormal detection method with high detection rate, high false alarm rate and strong compression capability for data. RI-detector shows a better detection performance by comparison with other commonly used anomaly detection methods; especially where the data sets has a clear boundary. It not only reflects the various states of bearing, but also reflects the fault degree pass the abnormal degree of the same equipment failure when analyzed the bearing state data used RI-detector. The RI-detector can detect the faults of equipment by learning normal data without fault data, which is built with reduction boundary samples, their boundary location information and the self-radius. It can efficiently detect the faults of the equipment that lacks fault data.