机械工程学报
機械工程學報
궤계공정학보
Journal of Mechanical Engineering
2015年
16期
29-40
,共12页
张利鹏%李亮%祁炳楠%宋健
張利鵬%李亮%祁炳楠%宋健
장리붕%리량%기병남%송건
电动汽车%分布式驱动%机电耦合%稳定性控制
電動汽車%分佈式驅動%機電耦閤%穩定性控製
전동기차%분포식구동%궤전우합%은정성공제
electric vehicle%distributed drive%electromechanical coupling%stability control
为了利用所设计的双电机防滑差速驱动系统来提高分布式驱动汽车的动力学性能,在前期同轴耦合驱动控制理论研究的基础上,开展该车的高速稳定性机电耦合控制研究。建立并验证包含所设计驱动系统在内的分布式驱动汽车的人-车系统14自由度空间动力学模型;以横摆角速度和质心侧偏角为状态变量,基于模糊规则设计动力学稳定性控制器;制定整车失稳的判定条件,辨识控制系统参数;利用施加机电耦合控制所产生的附加直接横摆力矩,实现极限工况下的整车高速稳定性控制。结果表明,采用机电耦合控制,除了可以实现两侧分布式驱动系统的动力耦合,起到增强车辆高速稳定性的作用,还能够协调两侧驱动系统的转矩输出,抑制驱动力矩波动,降低电机和控制器的工作强度。
為瞭利用所設計的雙電機防滑差速驅動繫統來提高分佈式驅動汽車的動力學性能,在前期同軸耦閤驅動控製理論研究的基礎上,開展該車的高速穩定性機電耦閤控製研究。建立併驗證包含所設計驅動繫統在內的分佈式驅動汽車的人-車繫統14自由度空間動力學模型;以橫襬角速度和質心側偏角為狀態變量,基于模糊規則設計動力學穩定性控製器;製定整車失穩的判定條件,辨識控製繫統參數;利用施加機電耦閤控製所產生的附加直接橫襬力矩,實現極限工況下的整車高速穩定性控製。結果錶明,採用機電耦閤控製,除瞭可以實現兩側分佈式驅動繫統的動力耦閤,起到增彊車輛高速穩定性的作用,還能夠協調兩側驅動繫統的轉矩輸齣,抑製驅動力矩波動,降低電機和控製器的工作彊度。
위료이용소설계적쌍전궤방활차속구동계통래제고분포식구동기차적동역학성능,재전기동축우합구동공제이론연구적기출상,개전해차적고속은정성궤전우합공제연구。건립병험증포함소설계구동계통재내적분포식구동기차적인-차계통14자유도공간동역학모형;이횡파각속도화질심측편각위상태변량,기우모호규칙설계동역학은정성공제기;제정정차실은적판정조건,변식공제계통삼수;이용시가궤전우합공제소산생적부가직접횡파력구,실현겁한공황하적정차고속은정성공제。결과표명,채용궤전우합공제,제료가이실현량측분포식구동계통적동력우합,기도증강차량고속은정성적작용,환능구협조량측구동계통적전구수출,억제구동력구파동,강저전궤화공제기적공작강도。
The advantage of the designed dual-motor anti-slip differential drive system is taken to improve the dynamics performance of the distributed drive electric vehicle. On the basis of the early research on the coaxial coupling traction control theory, the high speed stability electromechanical coupling control strategy for the vehicle is carried out. A 14 degrees of freedom space dynamics model for the driver-vehicle system of the distributed drive vehicle is established and verified, in which the model of the designed drive system is included. The yaw rate and the sideslip angle are taken as the control variables, and a dynamic stability controller is designed based on a specific fuzzy rules. The vehicle instability judgment condition is developed and the control system parameters are identified. The vehicle high speed stability control in the ultimate working conditions is achieved based on the direct yaw-moment generated by the electromechanical coupling controller. The results show that the electromechanical coupling controller not only can play a role in enhancing the vehicle high speed stability by implementing the dynamic coupling of the dual-motor distributed drive systems, but also can coordinate the torque output from both of the drive systems, so the fluctuation of the driving torque is inhibit, and the work intensity of the motors and the controller is reduced.