机械工程学报
機械工程學報
궤계공정학보
Journal of Mechanical Engineering
2015年
16期
50-56
,共7页
四驱混合动力轿车%车速估计%分布式滤波结构%自适应无味卡尔曼滤波算法
四驅混閤動力轎車%車速估計%分佈式濾波結構%自適應無味卡爾曼濾波算法
사구혼합동력교차%차속고계%분포식려파결구%자괄응무미잡이만려파산법
four-wheel drive hybrid electric car%vehicle speed estimation%distributed filter structure%self-adaptive unscented Kalman filtering algorithm
四驱混合动力轿车存在两轮/四轮多种驱动模式,针对某一驱动模式所设计的车速估计算法难以满足其他模式下车速估计的精度。考虑车辆不同驱动模式,利用车载传感器信号、后轮毂电机转矩信息以及既定档位下前轮转矩信息,提出两级分布式卡尔曼车速估计方法。考虑模型的强非线性,采用无味卡尔曼滤波(Unscented Kalman filter,UKF)算法设计主/子滤波器。同时为了提高UKF算法对模型误差、信号干扰的鲁棒性,实现了量测噪声均值和方差的自适应调节。基于Untire轮胎模型和滑移率递推方程,设计滑移率子滤波器;基于整车运动学模型,设计车速主滤波器;考虑不同驱动模式,利用子滤波器估计值在线融合得到车速。搭建 Carsim-Simulink 联合仿真平台,并分别在纯电动驱动模式和四轮混合驱动模式下,对车速估计算法进行仿真验证。结果表明,所提出的两级分布式卡尔曼车速估计方法能有效提高车速估计精度,并增强了对模型误差、量测信号干扰和不同驱动模式的鲁棒性。
四驅混閤動力轎車存在兩輪/四輪多種驅動模式,針對某一驅動模式所設計的車速估計算法難以滿足其他模式下車速估計的精度。攷慮車輛不同驅動模式,利用車載傳感器信號、後輪轂電機轉矩信息以及既定檔位下前輪轉矩信息,提齣兩級分佈式卡爾曼車速估計方法。攷慮模型的彊非線性,採用無味卡爾曼濾波(Unscented Kalman filter,UKF)算法設計主/子濾波器。同時為瞭提高UKF算法對模型誤差、信號榦擾的魯棒性,實現瞭量測譟聲均值和方差的自適應調節。基于Untire輪胎模型和滑移率遞推方程,設計滑移率子濾波器;基于整車運動學模型,設計車速主濾波器;攷慮不同驅動模式,利用子濾波器估計值在線融閤得到車速。搭建 Carsim-Simulink 聯閤倣真平檯,併分彆在純電動驅動模式和四輪混閤驅動模式下,對車速估計算法進行倣真驗證。結果錶明,所提齣的兩級分佈式卡爾曼車速估計方法能有效提高車速估計精度,併增彊瞭對模型誤差、量測信號榦擾和不同驅動模式的魯棒性。
사구혼합동력교차존재량륜/사륜다충구동모식,침대모일구동모식소설계적차속고계산법난이만족기타모식하차속고계적정도。고필차량불동구동모식,이용차재전감기신호、후륜곡전궤전구신식이급기정당위하전륜전구신식,제출량급분포식잡이만차속고계방법。고필모형적강비선성,채용무미잡이만려파(Unscented Kalman filter,UKF)산법설계주/자려파기。동시위료제고UKF산법대모형오차、신호간우적로봉성,실현료량측조성균치화방차적자괄응조절。기우Untire륜태모형화활이솔체추방정,설계활이솔자려파기;기우정차운동학모형,설계차속주려파기;고필불동구동모식,이용자려파기고계치재선융합득도차속。탑건 Carsim-Simulink 연합방진평태,병분별재순전동구동모식화사륜혼합구동모식하,대차속고계산법진행방진험증。결과표명,소제출적량급분포식잡이만차속고계방법능유효제고차속고계정도,병증강료대모형오차、량측신호간우화불동구동모식적로봉성。
The driving mode of hybrid electric car can be two-wheel or four-wheel drive. The speed estimation designed for a specific driving mode can hardly achieve high estimated accuracy in all modes. Focus on the changeable driving mode, a kind of distributed Kalman filter with two levels is proposed, by means of utilize vehicle sensors signals, the driving torque of rear in-wheel motors and the torque of front driving wheels at the given gear state. Considering the strongly nonlinear of the model, UKF is adopted to design the filter, and to improve the filter’s robustness on modeling error and signal noise, measurement noise mean and covariance is self-adaptive. Firstly, based on UniTire Model and recursive equation of slip rate, the sub-filter is developed; secondly, based on the vehicle Kinematics model, the master-filter can be developed; at last, in consideration of different driving modes, a more accurate velocity estimation is obtained by fusing information from each sub-filters. With the help of Carsim and Simulink, the simulation platform about four wheel drive hybrid electric car is developed, and the proposed speed estimation algorithm is tested on this platform under the pure electric drive mode and the hybrid drive mode. The results show that the proposed algorithm has not only high precision, but also strong robustness on modeling error, measurement noise and the changeable driving mode.