机械工程学报
機械工程學報
궤계공정학보
Journal of Mechanical Engineering
2015年
16期
41-49
,共9页
林程%徐志峰%王文伟%曹万科
林程%徐誌峰%王文偉%曹萬科
림정%서지봉%왕문위%조만과
分布式驱动电动汽车%横摆稳定性控制%滑模条件积分控制%直接滑动率分配
分佈式驅動電動汽車%橫襬穩定性控製%滑模條件積分控製%直接滑動率分配
분포식구동전동기차%횡파은정성공제%활모조건적분공제%직접활동솔분배
distributed drive electric vehicle%yaw stability control%sliding mode control and conditional integrator%direct slip ratio distribution
横摆稳定性是车辆主动安全研究的重要内容,在分布式驱动电动汽车上,利用车轮驱动/制动力矩可独立、精确调节的优势,能进一步提高横摆控制的效果。提出一种基于直接滑动率分配的横摆稳定性控制策略,控制策略分为上、下两层,上层为主动横摆力矩决策层,下层为车轮滑动率分配与控制层。为提高鲁棒性,在上层中采用滑模控制进行主动横摆力矩决策,并引入条件积分来消除滑模面附近的抖动和提高横摆角速度的跟踪精度,采用李雅普诺夫判定法证明算法的收敛性。在控制策略下层,基于魔术轮胎公式建立主动横摆力矩与车轮滑动率的关系式并计算出滑动率的控制边界值。应用 Carsim 与Matlab/Simulink联合仿真平台,进行所提出的横摆稳定性控制策略与Carsim/ESC的仿真对比。结果表明,引入条件积分的滑模控制能够在消除抖动的同时减小横摆角速度的跟踪误差,所提横摆稳定性控制策略能够提高车辆循迹能力,降低轮胎侧偏角并减小横摆控制过程中的车速下降幅度。
橫襬穩定性是車輛主動安全研究的重要內容,在分佈式驅動電動汽車上,利用車輪驅動/製動力矩可獨立、精確調節的優勢,能進一步提高橫襬控製的效果。提齣一種基于直接滑動率分配的橫襬穩定性控製策略,控製策略分為上、下兩層,上層為主動橫襬力矩決策層,下層為車輪滑動率分配與控製層。為提高魯棒性,在上層中採用滑模控製進行主動橫襬力矩決策,併引入條件積分來消除滑模麵附近的抖動和提高橫襬角速度的跟蹤精度,採用李雅普諾伕判定法證明算法的收斂性。在控製策略下層,基于魔術輪胎公式建立主動橫襬力矩與車輪滑動率的關繫式併計算齣滑動率的控製邊界值。應用 Carsim 與Matlab/Simulink聯閤倣真平檯,進行所提齣的橫襬穩定性控製策略與Carsim/ESC的倣真對比。結果錶明,引入條件積分的滑模控製能夠在消除抖動的同時減小橫襬角速度的跟蹤誤差,所提橫襬穩定性控製策略能夠提高車輛循跡能力,降低輪胎側偏角併減小橫襬控製過程中的車速下降幅度。
횡파은정성시차량주동안전연구적중요내용,재분포식구동전동기차상,이용차륜구동/제동력구가독립、정학조절적우세,능진일보제고횡파공제적효과。제출일충기우직접활동솔분배적횡파은정성공제책략,공제책략분위상、하량층,상층위주동횡파력구결책층,하층위차륜활동솔분배여공제층。위제고로봉성,재상층중채용활모공제진행주동횡파력구결책,병인입조건적분래소제활모면부근적두동화제고횡파각속도적근종정도,채용리아보낙부판정법증명산법적수렴성。재공제책략하층,기우마술륜태공식건립주동횡파력구여차륜활동솔적관계식병계산출활동솔적공제변계치。응용 Carsim 여Matlab/Simulink연합방진평태,진행소제출적횡파은정성공제책략여Carsim/ESC적방진대비。결과표명,인입조건적분적활모공제능구재소제두동적동시감소횡파각속도적근종오차,소제횡파은정성공제책략능구제고차량순적능력,강저륜태측편각병감소횡파공제과정중적차속하강폭도。
Yaw stability control is an important part of vehicle active safety technology. On the four-wheel independently actuated electric ground vehicles, wheel driving/braking torques can be modulated independently and accurately, this can be used to enhance the performance of vehicle yaw control. In this article, a hierarchical yaw stability control algorithm based on direct slip ratio distribution is presented. Sliding mode control is adopted to yield the desired yaw moment in the high-layer of the algorithm due to the possible modeling inaccuracies and parametric uncertainties. The conditional integrator approach is employed to overcome the chattering issue, and its asymptotic stability property is demonstrated through the Lyapunov method. In the low-layer of the presented method, the magic formula tire model is used to establish the relationship between yaw moment and wheel slip ratio, then yaw moment was allocated to wheels’ target slip ratio directly. Compared with Carsim/ESC by co-simulation based on Matlab and Carsim, sliding mode control with conditional integrator can reduce the yaw rate tracking error, and the presented algorithm can improve vehicle tracking ability, enlarge the safety margin by reducing tire side slip angle.