计算机应用与软件
計算機應用與軟件
계산궤응용여연건
Computer Applications and Software
2015年
9期
240-243,279
,共5页
K-means%人工鱼群算法%自组织行为%自适应策略%粒子群优化
K-means%人工魚群算法%自組織行為%自適應策略%粒子群優化
K-means%인공어군산법%자조직행위%자괄응책략%입자군우화
K-means%Artificial fish swarm algorithm (AFSA)%Self-organising behaviour%Self-adaptive strategy%Particle swarm optimisation
针对K-means易收敛于局部最优以及对初始值敏感和人工鱼群算法收敛速度快,对初始值不敏感及自组织行为的问题,提出一种K-means和人工鱼群算法融合的聚类方法。该算法先将标准人工鱼群算法用自适应策略加以改进,即在人工鱼群算法早期迭代中使用固定视野,随着迭代次数的增加,采用自适应减少的视野值。在此基础上将K-means算法融入到改进的人工鱼群算法中人工鱼中,随机产生的部分人工鱼在每次完成人工鱼群算法的迭代后,进行一次K-means算法的迭代。实验结果证明融合后的新算法明显地优于粒子群优化(PSO)、K-means及改进的人工鱼群算法(IAFSA),它将有效地被应用于数据聚类中。
針對K-means易收斂于跼部最優以及對初始值敏感和人工魚群算法收斂速度快,對初始值不敏感及自組織行為的問題,提齣一種K-means和人工魚群算法融閤的聚類方法。該算法先將標準人工魚群算法用自適應策略加以改進,即在人工魚群算法早期迭代中使用固定視野,隨著迭代次數的增加,採用自適應減少的視野值。在此基礎上將K-means算法融入到改進的人工魚群算法中人工魚中,隨機產生的部分人工魚在每次完成人工魚群算法的迭代後,進行一次K-means算法的迭代。實驗結果證明融閤後的新算法明顯地優于粒子群優化(PSO)、K-means及改進的人工魚群算法(IAFSA),它將有效地被應用于數據聚類中。
침대K-means역수렴우국부최우이급대초시치민감화인공어군산법수렴속도쾌,대초시치불민감급자조직행위적문제,제출일충K-means화인공어군산법융합적취류방법。해산법선장표준인공어군산법용자괄응책략가이개진,즉재인공어군산법조기질대중사용고정시야,수착질대차수적증가,채용자괄응감소적시야치。재차기출상장K-means산법융입도개진적인공어군산법중인공어중,수궤산생적부분인공어재매차완성인공어군산법적질대후,진행일차K-means산법적질대。실험결과증명융합후적신산법명현지우우입자군우화(PSO)、K-means급개진적인공어군산법(IAFSA),타장유효지피응용우수거취류중。
Aiming at the problems of K-means clustering being subject to local optimum and sensitive to initial value,and the problems of artificial fish swarm algorithm having high convergence rate,being insensitive to initial values and self-organising behaviour,we propose a clustering method which combines K-means and artificial fish swarm algorithm.The algorithm first slightly improves the standard artificial fish swarm algorithm with self-adaptive strategy:i.e.in early iteration of artificial fish swarm algorithm it uses the fixed visual perspective,with the increase of iteration times,is adopts the self-adaptive decreasing visual perspective value.Based on this,it integrates K-means algorithm to artificial fishes of the improved artificial fish swarm algorithm,part of the artificial fishes randomly generated will go through the iteration of K-means once after finishing each iteration in artificial fish algorithm.Experimental results prove that the new algorithm is obviously superior to the particle swarm optimisation,K-means and the improved AFSA,and it will be effectively applied in data clustering.