计算机应用与软件
計算機應用與軟件
계산궤응용여연건
Computer Applications and Software
2015年
9期
149-151,191
,共4页
赵嵩%焦阳%曹海旺%杨恒
趙嵩%焦暘%曹海旺%楊恆
조숭%초양%조해왕%양항
目标检索%视词字典%随机维哈希
目標檢索%視詞字典%隨機維哈希
목표검색%시사자전%수궤유합희
Object retrieval%Visual-words dictionary%Randomised dimensions hashing
基于视词字典树的算法由于高效性使其在基于大规模图像数据库的目标检索领域得到了广泛地应用。该类算法属于从文字搜索领域借鉴来的“视觉词袋”的算法。这种算法中的一个关键步骤是将高维特征向量量化成视词。将这种量化过程看作高维特征向量的最近邻搜索问题,并且提出一种随机维哈希(RDH)算法用于索引视词字典。实验结果证明,该算法比基于字典树的算法具有更高的量化精度,从而可以显著提高目标检索性能。
基于視詞字典樹的算法由于高效性使其在基于大規模圖像數據庫的目標檢索領域得到瞭廣汎地應用。該類算法屬于從文字搜索領域藉鑒來的“視覺詞袋”的算法。這種算法中的一箇關鍵步驟是將高維特徵嚮量量化成視詞。將這種量化過程看作高維特徵嚮量的最近鄰搜索問題,併且提齣一種隨機維哈希(RDH)算法用于索引視詞字典。實驗結果證明,該算法比基于字典樹的算法具有更高的量化精度,從而可以顯著提高目標檢索性能。
기우시사자전수적산법유우고효성사기재기우대규모도상수거고적목표검색영역득도료엄범지응용。해류산법속우종문자수색영역차감래적“시각사대”적산법。저충산법중적일개관건보취시장고유특정향량양화성시사。장저충양화과정간작고유특정향량적최근린수색문제,병차제출일충수궤유합희(RDH)산법용우색인시사자전。실험결과증명,해산법비기우자전수적산법구유경고적양화정도,종이가이현저제고목표검색성능。
Visual-words dictionary tree-based algorithm has been widely applied in object retrieval in large-scale image database due to its efficiency.Such algorithm appertains to the bag-of-visual-words algorithm which is borrowed from text search field.A key step of such algo-rithm is to quantify the high-dimensional feature vectors to the visual words.In this paper,we consider the quantification process as the nea-rest neighbour search of high-dimensional feature vectors,and propose a randomised dimensions hashing algorithm to index the visual-word dictionary.Experimental results demonstrate that the proposed algorithm has higher quantification accuracy than the vocabulary tree-based al-gorithms,thus it can significantly improve object retrieval performance.