电子科技大学学报
電子科技大學學報
전자과기대학학보
Journal of University of Electronic Science and Technology of China
2015年
5期
789-794
,共6页
谭颖%张涛%谭睿%沈小涛%校景中
譚穎%張濤%譚睿%瀋小濤%校景中
담영%장도%담예%침소도%교경중
注意缺陷与多动%机器学习%支持向量机%小波变换
註意缺陷與多動%機器學習%支持嚮量機%小波變換
주의결함여다동%궤기학습%지지향량궤%소파변환
attention deficit/hyperactivity disorder%machine learning%support vector machine%wavelet-translate
提出基于小波变换的特征提取方法对ADHD病人进行分类研究。采用115名ADHD-200的竞赛静息态功能磁共振数据,首先提取了90个脑区的平均时间序列信号,然后利用小波变换多分辨率分析特性对信号进行3层分解;计算了各个尺度下小波系数的能量值,对能量值进行归一化处理后,将其作为分类特征向量;最后结合SVM分类器采用留一交叉验证法对ADHD病人进行分类。结果表明该方法有助于ADHD病人的分类与诊断。
提齣基于小波變換的特徵提取方法對ADHD病人進行分類研究。採用115名ADHD-200的競賽靜息態功能磁共振數據,首先提取瞭90箇腦區的平均時間序列信號,然後利用小波變換多分辨率分析特性對信號進行3層分解;計算瞭各箇呎度下小波繫數的能量值,對能量值進行歸一化處理後,將其作為分類特徵嚮量;最後結閤SVM分類器採用留一交扠驗證法對ADHD病人進行分類。結果錶明該方法有助于ADHD病人的分類與診斷。
제출기우소파변환적특정제취방법대ADHD병인진행분류연구。채용115명ADHD-200적경새정식태공능자공진수거,수선제취료90개뇌구적평균시간서렬신호,연후이용소파변환다분변솔분석특성대신호진행3층분해;계산료각개척도하소파계수적능량치,대능량치진행귀일화처리후,장기작위분류특정향량;최후결합SVM분류기채용류일교차험증법대ADHD병인진행분류。결과표명해방법유조우ADHD병인적분류여진단。
In this study, we propose an approach to extract features based wavelet transform for the ADHD classification. One hundred and fifteen subjects’ resting state fMRI data were adopted, which come from ADHD-200 competition. We first extracted the time series of ninety brain areas, and decomposed them into three levels using the wavelet transform for each subject. Secondly, the energy values of any scale were computed and normalized, which construct the classification feature vectors. Finally, we combined the SVM to classification in the ADHD based leave-one-out cross validation. The results demonstrate that the wavelet transform feature extract approach is useful in classification and diagnosis for ADHD.