红外技术
紅外技術
홍외기술
Infrared Technology
2015年
8期
664-671
,共8页
莫建文%曾儿孟%张彤%袁华
莫建文%曾兒孟%張彤%袁華
막건문%증인맹%장동%원화
几何聚类%字典学习%稀疏表示%局部可控核回归%非局部相似
幾何聚類%字典學習%稀疏錶示%跼部可控覈迴歸%非跼部相似
궤하취류%자전학습%희소표시%국부가공핵회귀%비국부상사
geometric clustering%dictionary learning%sparse representation%local steering kernel regression%non-local similarity
传统的基于稀疏表示的超分辨率重建算法对所有图像块,应用单一冗余字典表示而不能反映不同几何结构类型图像块间的区别。针对这一问题,本文探索图像局部几何结构特性,提出一种基于结构特性聚类的几何字典学习和耦合约束的超分辨率重建方法。该方法首先对训练样本图像块进行几何特性聚类,然后应用 K-SVD 算法为每个聚类块联合训练得到高低分辨率字典。此外,在重建过程中引入局部可控核回归和非局部相似性耦合约束,以提高重建图像质量。实验结果表明,与单一字典超分辨率算法相比,本文方法重建图像边缘和细节部分明显改善,评价参数较大提高。
傳統的基于稀疏錶示的超分辨率重建算法對所有圖像塊,應用單一冗餘字典錶示而不能反映不同幾何結構類型圖像塊間的區彆。針對這一問題,本文探索圖像跼部幾何結構特性,提齣一種基于結構特性聚類的幾何字典學習和耦閤約束的超分辨率重建方法。該方法首先對訓練樣本圖像塊進行幾何特性聚類,然後應用 K-SVD 算法為每箇聚類塊聯閤訓練得到高低分辨率字典。此外,在重建過程中引入跼部可控覈迴歸和非跼部相似性耦閤約束,以提高重建圖像質量。實驗結果錶明,與單一字典超分辨率算法相比,本文方法重建圖像邊緣和細節部分明顯改善,評價參數較大提高。
전통적기우희소표시적초분변솔중건산법대소유도상괴,응용단일용여자전표시이불능반영불동궤하결구류형도상괴간적구별。침대저일문제,본문탐색도상국부궤하결구특성,제출일충기우결구특성취류적궤하자전학습화우합약속적초분변솔중건방법。해방법수선대훈련양본도상괴진행궤하특성취류,연후응용 K-SVD 산법위매개취류괴연합훈련득도고저분변솔자전。차외,재중건과정중인입국부가공핵회귀화비국부상사성우합약속,이제고중건도상질량。실험결과표명,여단일자전초분변솔산법상비,본문방법중건도상변연화세절부분명현개선,평개삼수교대제고。
Traditional super-resolution algorithms based on sparse representation of image patches exploit single redundant dictionary to represent the image patches that contain various textures, which can not reflect the differences of various image patches types. In order to overcome this disadvantage, this paper proposes a single image super resolution reconstruction method based on geometric dictionary learning and coupled regularization, by exploring the local geometric property of image patches. A large number of training image patches are clustered into several groups by their geometric property, from which the corresponding “geometric dictionaries” are learned via K-SVD algorithm which is combined with the idea that the high and low resolution dictionaries can be co-trained. In addition, a coupled regularization of local steering kernel regression and non-local similarity is introduced into the proposed method to further improve the quality of the reconstructed images. Experiment results show that the proposed method both increases the evaluation parameters and improves the visual quality of the edges and the details significantly.