计算机应用与软件
計算機應用與軟件
계산궤응용여연건
Computer Applications and Software
2015年
9期
13-16,101
,共5页
频繁项集%FP-growth%MapReduce%条件模式基%NFP-tree%并行
頻繁項集%FP-growth%MapReduce%條件模式基%NFP-tree%併行
빈번항집%FP-growth%MapReduce%조건모식기%NFP-tree%병행
Frequent itemsets%FP-growth%MapReduce Conditional pattern%NFP-tree%Parallel
现有FP-growth频繁集挖掘算法在处理大数据时存在时空效率不高的问题,且内存的使用随着数据的增加已经无法满足把待挖掘数据压缩存储在单个内存中,为此,提出一种基于MapReduce模型的频繁项集并行挖掘算法。该算法采用一种基于key/value键值对直接扫描value寻找条件模式基的方式,同时通过在原有FP-tree树节点中新增一个带频繁项前缀的域空间来构建一颗新的条件模式树NFP-tree,使得对一项频繁项的条件模式基进行一次建树一次遍历就可以得到相应的频繁项集。对所提出的算法在Hadoop平台进行了验证与分析,实验结果表明该算法效率较传统FP-growth算法平均提高16.6%。
現有FP-growth頻繁集挖掘算法在處理大數據時存在時空效率不高的問題,且內存的使用隨著數據的增加已經無法滿足把待挖掘數據壓縮存儲在單箇內存中,為此,提齣一種基于MapReduce模型的頻繁項集併行挖掘算法。該算法採用一種基于key/value鍵值對直接掃描value尋找條件模式基的方式,同時通過在原有FP-tree樹節點中新增一箇帶頻繁項前綴的域空間來構建一顆新的條件模式樹NFP-tree,使得對一項頻繁項的條件模式基進行一次建樹一次遍歷就可以得到相應的頻繁項集。對所提齣的算法在Hadoop平檯進行瞭驗證與分析,實驗結果錶明該算法效率較傳統FP-growth算法平均提高16.6%。
현유FP-growth빈번집알굴산법재처리대수거시존재시공효솔불고적문제,차내존적사용수착수거적증가이경무법만족파대알굴수거압축존저재단개내존중,위차,제출일충기우MapReduce모형적빈번항집병행알굴산법。해산법채용일충기우key/value건치대직접소묘value심조조건모식기적방식,동시통과재원유FP-tree수절점중신증일개대빈번항전철적역공간래구건일과신적조건모식수NFP-tree,사득대일항빈번항적조건모식기진행일차건수일차편력취가이득도상응적빈번항집。대소제출적산법재Hadoop평태진행료험증여분석,실험결과표명해산법효솔교전통FP-growth산법평균제고16.6%。
Existing mining algorithms of FP-growth frequent itemset has low time and space efficiency problem when dealing with large data,and with the data increase the memory usage can no longer satisfy to compress and store the data to be minded in a single memory. Therefore,the paper proposes a MapReduce model-based parallel mining algorithm for frequent itemset.The algorithm adopts a way which directly scans value based on key-value pairs to look for the conditional pattern base.Meanwhile,it also constructs a new condition pattern tree NFP-tree by adding a domain space with frequent item prefix in original FP-tree tree node,and that makes it possible to get the corresponding frequent itemsets by constructing the tree once and traverse once on the condition pattern base of a frequent item.This algorithm is verified and analysed on Hadoop platform,experimental results show that the algorithm is more efficient than the traditional FP-growth algorithm by an average increase of 1 6.6%.