现代电子技术
現代電子技術
현대전자기술
Modern Electronics Technique
2015年
17期
107-109
,共3页
郭增波%巴寅亮%王书提%谢鑫
郭增波%巴寅亮%王書提%謝鑫
곽증파%파인량%왕서제%사흠
改进的LVQ神经网络%发动机%故障诊断%神经元
改進的LVQ神經網絡%髮動機%故障診斷%神經元
개진적LVQ신경망락%발동궤%고장진단%신경원
improved LVQ neural network%engine%fault diagnosis%neurone
学习向量量化(LVQ)神经网络可以通过监督学习完成对输入向量模式的准确分类,提出了一种基于改进的LVQ神经网络的发动机故障诊断方法,介绍了LVQ神经网络及其改进的学习算法.以长城哈佛GW2.8TC型发动机为实验对象,让发动机在怠速状况下,对发动机进行故障设置,利用金德KT600电脑故障诊断仪采集发动机数据流,运用改进的LVQ神经网络建立诊断模型,诊断结果表明,改进的LVQ神经网络能对发动机故障做出正确分类,准确率比较高.
學習嚮量量化(LVQ)神經網絡可以通過鑑督學習完成對輸入嚮量模式的準確分類,提齣瞭一種基于改進的LVQ神經網絡的髮動機故障診斷方法,介紹瞭LVQ神經網絡及其改進的學習算法.以長城哈彿GW2.8TC型髮動機為實驗對象,讓髮動機在怠速狀況下,對髮動機進行故障設置,利用金德KT600電腦故障診斷儀採集髮動機數據流,運用改進的LVQ神經網絡建立診斷模型,診斷結果錶明,改進的LVQ神經網絡能對髮動機故障做齣正確分類,準確率比較高.
학습향량양화(LVQ)신경망락가이통과감독학습완성대수입향량모식적준학분류,제출료일충기우개진적LVQ신경망락적발동궤고장진단방법,개소료LVQ신경망락급기개진적학습산법.이장성합불GW2.8TC형발동궤위실험대상,양발동궤재태속상황하,대발동궤진행고장설치,이용금덕KT600전뇌고장진단의채집발동궤수거류,운용개진적LVQ신경망락건립진단모형,진단결과표명,개진적LVQ신경망락능대발동궤고장주출정학분류,준학솔비교고.
Since learning vector quantization (LVQ) neural network can classify input vector pattern accurately by super-vised learning,the fault diagnosis method for engines based on LVQ neural network is proposed. LVQ neural network and its im-proved learning method are introduced. Taking Great Wall Harvard GW2.8TC engine as the experimental subject,faults are set for the engine under idle speed condition. The data stream of the engine is collected by using Kinder KT600 computer fault diag-nosis tester. The diagnosis model was established by using the improved LVQ neural network. The diagnosis results show that the improved LVQ neural network can classify engine faults accurately,and the precision rate is relatively high.